IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0180863.html
   My bibliography  Save this article

A 3-dimensional mathematical model of microbial proliferation that generates the characteristic cumulative relative abundance distributions in gut microbiomes

Author

Listed:
  • Lena Takayasu
  • Wataru Suda
  • Eiichiro Watanabe
  • Shinji Fukuda
  • Kageyasu Takanashi
  • Hiroshi Ohno
  • Misako Takayasu
  • Hideki Takayasu
  • Masahira Hattori

Abstract

The gut microbiome is highly variable among individuals, largely due to differences in host lifestyle and physiology. However, little is known about the underlying processes or rules that shape the complex microbial community. In this paper, we show that the cumulative relative abundance distribution (CRAD) of microbial species can be approximated by a power law function, and found that the power exponent of CRADs generated from 16S rRNA gene and metagenomic data for normal gut microbiomes of humans and mice was similar consistently with ∼0.9. A similarly robust power exponent was observed in CRADs of gut microbiomes during dietary interventions and several diseases. However, the power exponent was found to be ∼0.6 in CRADs from gut microbiomes characterized by lower species richness, such as those of human infants and the small intestine of mice. In addition, the CRAD of gut microbiomes of mice treated with antibiotics differed slightly from those of infants and the small intestines of mice. Based on these observations, in addition to data on the spatial distribution of microbes in the digestive tract, we developed a 3-dimensional mathematical model of microbial proliferation that reproduced the experimentally observed CRAD patterns. Our model indicated that the CRAD may be determined by the ratio of emerging to pre-existing species during non-uniform spatially competitive proliferation, independent of species composition.

Suggested Citation

  • Lena Takayasu & Wataru Suda & Eiichiro Watanabe & Shinji Fukuda & Kageyasu Takanashi & Hiroshi Ohno & Misako Takayasu & Hideki Takayasu & Masahira Hattori, 2017. "A 3-dimensional mathematical model of microbial proliferation that generates the characteristic cumulative relative abundance distributions in gut microbiomes," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-20, August.
  • Handle: RePEc:plo:pone00:0180863
    DOI: 10.1371/journal.pone.0180863
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180863
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0180863&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0180863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aurélie Cotillard & Sean P. Kennedy & Ling Chun Kong & Edi Prifti & Nicolas Pons & Emmanuelle Le Chatelier & Mathieu Almeida & Benoit Quinquis & Florence Levenez & Nathalie Galleron & Sophie Gougis & , 2013. "Dietary intervention impact on gut microbial gene richness," Nature, Nature, vol. 500(7464), pages 585-588, August.
    2. Lawrence A. David & Corinne F. Maurice & Rachel N. Carmody & David B. Gootenberg & Julie E. Button & Benjamin E. Wolfe & Alisha V. Ling & A. Sloan Devlin & Yug Varma & Michael A. Fischbach & Sudha B. , 2014. "Diet rapidly and reproducibly alters the human gut microbiome," Nature, Nature, vol. 505(7484), pages 559-563, January.
    3. Catherine A. Lozupone & Jesse I. Stombaugh & Jeffrey I. Gordon & Janet K. Jansson & Rob Knight, 2012. "Diversity, stability and resilience of the human gut microbiota," Nature, Nature, vol. 489(7415), pages 220-230, September.
    4. Amir Bashan & Travis E. Gibson & Jonathan Friedman & Vincent J. Carey & Scott T. Weiss & Elizabeth L. Hohmann & Yang-Yu Liu, 2016. "Universality of human microbial dynamics," Nature, Nature, vol. 534(7606), pages 259-262, June.
    5. Peter J. Turnbaugh & Micah Hamady & Tanya Yatsunenko & Brandi L. Cantarel & Alexis Duncan & Ruth E. Ley & Mitchell L. Sogin & William J. Jones & Bruce A. Roe & Jason P. Affourtit & Michael Egholm & Be, 2009. "A core gut microbiome in obese and lean twins," Nature, Nature, vol. 457(7228), pages 480-484, January.
    6. Peter J. Turnbaugh & Ruth E. Ley & Micah Hamady & Claire M. Fraser-Liggett & Rob Knight & Jeffrey I. Gordon, 2007. "The Human Microbiome Project," Nature, Nature, vol. 449(7164), pages 804-810, October.
    7. Igor Volkov & Jayanth R. Banavar & Stephen P. Hubbell & Amos Maritan, 2007. "Patterns of relative species abundance in rainforests and coral reefs," Nature, Nature, vol. 450(7166), pages 45-49, November.
    8. Fredrik H. Karlsson & Valentina Tremaroli & Intawat Nookaew & Göran Bergström & Carl Johan Behre & Björn Fagerberg & Jens Nielsen & Fredrik Bäckhed, 2013. "Gut metagenome in European women with normal, impaired and diabetic glucose control," Nature, Nature, vol. 498(7452), pages 99-103, June.
    9. Les Dethlefsen & Sue Huse & Mitchell L Sogin & David A Relman, 2008. "The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing," PLOS Biology, Public Library of Science, vol. 6(11), pages 1-18, November.
    10. Tanya Yatsunenko & Federico E. Rey & Mark J. Manary & Indi Trehan & Maria Gloria Dominguez-Bello & Monica Contreras & Magda Magris & Glida Hidalgo & Robert N. Baldassano & Andrey P. Anokhin & Andrew C, 2012. "Human gut microbiome viewed across age and geography," Nature, Nature, vol. 486(7402), pages 222-227, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sean M Gibbons & Sean M Kearney & Chris S Smillie & Eric J Alm, 2017. "Two dynamic regimes in the human gut microbiome," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-20, February.
    2. Sarah L Hagerty & Kent E Hutchison & Christopher A Lowry & Angela D Bryan, 2020. "An empirically derived method for measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related outcomes among a human clinical sample," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    3. Koji Hosomi & Mayu Saito & Jonguk Park & Haruka Murakami & Naoko Shibata & Masahiro Ando & Takahiro Nagatake & Kana Konishi & Harumi Ohno & Kumpei Tanisawa & Attayeb Mohsen & Yi-An Chen & Hitoshi Kawa, 2022. "Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Doris Vandeputte & Lindsey Commer & Raul Y. Tito & Gunter Kathagen & João Sabino & Séverine Vermeire & Karoline Faust & Jeroen Raes, 2021. "Temporal variability in quantitative human gut microbiome profiles and implications for clinical research," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Andrea Fontana & Concetta Panebianco & Andrea Picchianti-Diamanti & Bruno Laganà & Duccio Cavalieri & Adele Potenza & Riccardo Pracella & Elena Binda & Massimiliano Copetti & Valerio Pazienza, 2019. "Gut Microbiota Profiles Differ among Individuals Depending on Their Region of Origin: An Italian Pilot Study," IJERPH, MDPI, vol. 16(21), pages 1-20, October.
    6. Patrick D Schloss, 2009. "A High-Throughput DNA Sequence Aligner for Microbial Ecology Studies," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-9, December.
    7. John Molloy & Katrina Allen & Fiona Collier & Mimi L. K. Tang & Alister C. Ward & Peter Vuillermin, 2013. "The Potential Link between Gut Microbiota and IgE-Mediated Food Allergy in Early Life," IJERPH, MDPI, vol. 10(12), pages 1-22, December.
    8. Joe J. Lim & Christian Diener & James Wilson & Jacob J. Valenzuela & Nitin S. Baliga & Sean M. Gibbons, 2023. "Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Pirjo Wacklin & Harri Mäkivuokko & Noora Alakulppi & Janne Nikkilä & Heli Tenkanen & Jarkko Räbinä & Jukka Partanen & Kari Aranko & Jaana Mättö, 2011. "Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    10. Charles K Fisher & Thierry Mora & Aleksandra M Walczak, 2017. "Variable habitat conditions drive species covariation in the human microbiota," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-18, April.
    11. Amanda H Pendegraft & Boyi Guo & Nengjun Yi, 2019. "Bayesian hierarchical negative binomial models for multivariable analyses with applications to human microbiome count data," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-23, August.
    12. Elio L Herzog & Melania Wäfler & Irene Keller & Sebastian Wolf & Martin S Zinkernagel & Denise C Zysset-Burri, 2021. "The importance of age in compositional and functional profiling of the human intestinal microbiome," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-13, October.
    13. Xinhui Wang & Marinus J C Eijkemans & Jacco Wallinga & Giske Biesbroek & Krzysztof Trzciński & Elisabeth A M Sanders & Debby Bogaert, 2012. "Multivariate Approach for Studying Interactions between Environmental Variables and Microbial Communities," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    14. Todd D. Terhune & Richard C. Deth, 2018. "Aluminum Adjuvant-Containing Vaccines in the Context of the Hygiene Hypothesis: A Risk Factor for Eosinophilia and Allergy in a Genetically Susceptible Subpopulation?," IJERPH, MDPI, vol. 15(5), pages 1-16, May.
    15. Eman M Fouda, 2017. "Airway Microbiota and Allergic Diseases: Clinical Implications," International Journal of Pulmonary & Respiratory Sciences, Juniper Publishers Inc., vol. 1(5), pages 1-5, May.
    16. Charles K Fisher & Pankaj Mehta, 2014. "Identifying Keystone Species in the Human Gut Microbiome from Metagenomic Timeseries Using Sparse Linear Regression," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    17. Kumar P Mainali & Sharon Bewick & Peter Thielen & Thomas Mehoke & Florian P Breitwieser & Shishir Paudel & Arjun Adhikari & Joshua Wolfe & Eric V Slud & David Karig & William F Fagan, 2017. "Statistical analysis of co-occurrence patterns in microbial presence-absence datasets," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-21, November.
    18. Muntsa Rocafort & David B. Gootenberg & Jesús M. Luévano & Jeffrey M. Paer & Matthew R. Hayward & Juliet T. Bramante & Musie S. Ghebremichael & Jiawu Xu & Zoe H. Rogers & Alexander R. Munoz & Samson O, 2024. "HIV-associated gut microbial alterations are dependent on host and geographic context," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Gertrude Ecklu-Mensah & Candice Choo-Kang & Maria Gjerstad Maseng & Sonya Donato & Pascal Bovet & Bharathi Viswanathan & Kweku Bedu-Addo & Jacob Plange-Rhule & Prince Oti Boateng & Terrence E. Forrest, 2023. "Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Lucía Guadamuro & M. Andrea Azcárate-Peril & Rafael Tojo & Baltasar Mayo & Susana Delgado, 2021. "Impact of Dietary Isoflavone Supplementation on the Fecal Microbiota and Its Metabolites in Postmenopausal Women," IJERPH, MDPI, vol. 18(15), pages 1-11, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0180863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.