IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0173907.html
   My bibliography  Save this article

Adaptive feature selection using v-shaped binary particle swarm optimization

Author

Listed:
  • Xuyang Teng
  • Hongbin Dong
  • Xiurong Zhou

Abstract

Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers.

Suggested Citation

  • Xuyang Teng & Hongbin Dong & Xiurong Zhou, 2017. "Adaptive feature selection using v-shaped binary particle swarm optimization," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-22, March.
  • Handle: RePEc:plo:pone00:0173907
    DOI: 10.1371/journal.pone.0173907
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173907
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0173907&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0173907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Othman Soufan & Dimitrios Kleftogiannis & Panos Kalnis & Vladimir B Bajic, 2015. "DWFS: A Wrapper Feature Selection Tool Based on a Parallel Genetic Algorithm," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-23, February.
    2. Taqwa Ahmed Alhaj & Maheyzah Md Siraj & Anazida Zainal & Huwaida Tagelsir Elshoush & Fatin Elhaj, 2016. "Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-18, November.
    3. Du, Wen-Bo & Gao, Yang & Liu, Chen & Zheng, Zheng & Wang, Zhen, 2015. "Adequate is better: particle swarm optimization with limited-information," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 832-838.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Tian & Jia Guo & Haiyang Xiao & Ke Yan & Yuji Sato, 2022. "An electronic transition-based bare bones particle swarm optimization algorithm for high dimensional optimization problems," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-23, July.
    2. Mona A. S. Ali & Fathimathul Rajeena P. P. & Diaa Salama Abd Elminaam, 2022. "An Efficient Heap Based Optimizer Algorithm for Feature Selection," Mathematics, MDPI, vol. 10(14), pages 1-33, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    2. Mohamed A Mohamed & Ali M Eltamaly & Abdulrahman I Alolah, 2016. "PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-22, August.
    3. Kar Hoou Hui & Ching Sheng Ooi & Meng Hee Lim & Mohd Salman Leong & Salah Mahdi Al-Obaidi, 2017. "An improved wrapper-based feature selection method for machinery fault diagnosis," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-10, December.
    4. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    5. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    6. Yang, Han-Xin & Tang, Ming & Wang, Zhen, 2018. "Suppressing epidemic spreading by risk-averse migration in dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 347-352.
    7. Xia, Yongxiang & Zhang, Wenping & Zhang, Xuejun, 2016. "The effect of capacity redundancy disparity on the robustness of interconnected networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 561-568.
    8. Wuli Wang & Liming Duan & Yang Bai & Haoyu Wang & Hui Shao & Siyang Zhong, 2016. "A Triangle Mesh Standardization Method Based on Particle Swarm Optimization," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-14, August.
    9. Yang, Han-Xin & Yang, Jing, 2019. "Reputation-based investment strategy promotes cooperation in public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 886-893.
    10. Tian, Lin-Lin & Li, Ming-Chu & Wang, Zhen, 2016. "Cooperation enhanced by indirect reciprocity in spatial prisoner’s dilemma games for social P2P systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1252-1260.
    11. Lei Chen & Ling Diao & Jun Sang, 2019. "A novel weighted evidence combination rule based on improved entropy function with a diagnosis application," International Journal of Distributed Sensor Networks, , vol. 15(1), pages 15501477188, January.
    12. Zhang, Xue-Jun & Xu, Guo-Qiang & Zhu, Yan-Bo & Xia, Yong-Xiang, 2016. "Cascade-robustness optimization of coupling preference in interconnected networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 123-129.
    13. Xiang Yu & Xueqing Zhang, 2017. "Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    14. Du, Wenbo & Zhang, Mingyuan & Ying, Wen & Perc, Matjaž & Tang, Ke & Cao, Xianbin & Wu, Dapeng, 2018. "The networked evolutionary algorithm: A network science perspective," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 33-43.
    15. Wang, Qiang & He, Nanrong & Chen, Xiaojie, 2018. "Replicator dynamics for public goods game with resource allocation in large populations," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 162-170.
    16. Lordan, Oriol & Sallan, Jose M. & Escorihuela, Nuria & Gonzalez-Prieto, David, 2016. "Robustness of airline route networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 18-26.
    17. Bo Ouyang & Lurong Jiang & Zhaosheng Teng, 2016. "A Noise-Filtering Method for Link Prediction in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-12, January.
    18. Zhen Chen & Jun Zhang & Wen-Bo Du & Oriol Lordan & Jiangjun Tang, 2015. "Optimal Allocation of Node Capacity in Cascade-Robustness Networks," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-12, October.
    19. Wang, Xin-Wei & Chen, Zhen & Han, Chao, 2016. "Scheduling for single agile satellite, redundant targets problem using complex networks theory," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 125-132.
    20. Theocharis Stylianos Spyropoulos & Christos Andras & Persefoni Polychronidou, 2022. "An Analysis of Start-Up Founders Perceptions Based on Entropy Ratios - Evidence from the Greek IT Market," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 500-516.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0173907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.