IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0132907.html
   My bibliography  Save this article

An Economic Framework of Microbial Trade

Author

Listed:
  • Joshua Tasoff
  • Michael T Mee
  • Harris H Wang

Abstract

A large fraction of microbial life on earth exists in complex communities where metabolic exchange is vital. Microbes trade essential resources to promote their own growth in an analogous way to countries that exchange goods in modern economic markets. Inspired by these similarities, we developed a framework based on general equilibrium theory (GET) from economics to predict the population dynamics of trading microbial communities. Our biotic GET (BGET) model provides an a priori theory of the growth benefits of microbial trade, yielding several novel insights relevant to understanding microbial ecology and engineering synthetic communities. We find that the economic concept of comparative advantage is a necessary condition for mutualistic trade. Our model suggests that microbial communities can grow faster when species are unable to produce essential resources that are obtained through trade, thereby promoting metabolic specialization and increased intercellular exchange. Furthermore, we find that species engaged in trade exhibit a fundamental tradeoff between growth rate and relative population abundance, and that different environments that put greater pressure on group selection versus individual selection will promote varying strategies along this growth-abundance spectrum. We experimentally tested this tradeoff using a synthetic consortium of Escherichia coli cells and found the results match the predictions of the model. This framework provides a foundation to study natural and engineered microbial communities through a new lens based on economic theories developed over the past century.

Suggested Citation

  • Joshua Tasoff & Michael T Mee & Harris H Wang, 2015. "An Economic Framework of Microbial Trade," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-20, July.
  • Handle: RePEc:plo:pone00:0132907
    DOI: 10.1371/journal.pone.0132907
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132907
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0132907&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0132907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harris H. Wang & Farren J. Isaacs & Peter A. Carr & Zachary Z. Sun & George Xu & Craig R. Forest & George M. Church, 2009. "Programming cells by multiplex genome engineering and accelerated evolution," Nature, Nature, vol. 460(7257), pages 894-898, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molly F. Parsons & Matthew F. Allan & Shanshan Li & Tyson R. Shepherd & Sakul Ratanalert & Kaiming Zhang & Krista M. Pullen & Wah Chiu & Silvi Rouskin & Mark Bathe, 2023. "3D RNA-scaffolded wireframe origami," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    3. Sabarathinam Shanmugam & Anjana Hari & Arivalagan Pugazhendhi & Timo Kikas, 2023. "Integrated Catalytic Upgrading of Biomass-Derived Alcohols for Advanced Biofuel Production," Energies, MDPI, vol. 16(13), pages 1-24, June.
    4. Marc Teufel & Carlo A. Klein & Maurice Mager & Patrick Sobetzko, 2022. "A multifunctional system for genome editing and large-scale interspecies gene transfer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Anna Zimmermann & Julian E. Prieto-Vivas & Charlotte Cautereels & Anton Gorkovskiy & Jan Steensels & Yves Peer & Kevin J. Verstrepen, 2023. "A Cas3-base editing tool for targetable in vivo mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Carolyn N. Bayer & Maja Rennig & Anja K. Ehrmann & Morten H. H. Nørholm, 2021. "A standardized genome architecture for bacterial synthetic biology (SEGA)," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Daniel Mark Shapiro & Gunasheil Mandava & Sibel Ebru Yalcin & Pol Arranz-Gibert & Peter J. Dahl & Catharine Shipps & Yangqi Gu & Vishok Srikanth & Aldo I. Salazar-Morales & J. Patrick O’Brien & Koen V, 2022. "Protein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Michael B. Doud & Animesh Gupta & Victor Li & Sarah J. Medina & Caesar A. Fuente & Justin R. Meyer, 2024. "Competition-driven eco-evolutionary feedback reshapes bacteriophage lambda’s fitness landscape and enables speciation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Das, Manali & Patra, Pradipta & Ghosh, Amit, 2020. "Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Brian J. Caldwell & Andrew S. Norris & Caroline F. Karbowski & Alyssa M. Wiegand & Vicki H. Wysocki & Charles E. Bell, 2022. "Structure of a RecT/Redβ family recombinase in complex with a duplex intermediate of DNA annealing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Jack M. Moen & Kyle Mohler & Svetlana Rogulina & Xiaojian Shi & Hongying Shen & Jesse Rinehart, 2022. "Enhanced access to the human phosphoproteome with genetically encoded phosphothreonine," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Siwei Li & Jingjing An & Yaqiu Li & Xiagu Zhu & Dongdong Zhao & Lixian Wang & Yonghui Sun & Yuanzhao Yang & Changhao Bi & Xueli Zhang & Meng Wang, 2022. "Automated high-throughput genome editing platform with an AI learning in situ prediction model," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. T. Kuiken & G. Dana & K. Oye & D. Rejeski, 2014. "Shaping ecological risk research for synthetic biology," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(3), pages 191-199, September.
    14. Einat Shaer Tamar & Roy Kishony, 2022. "Multistep diversification in spatiotemporal bacterial-phage coevolution," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Shanmugam, Sabarathinam & Ngo, Huu-Hao & Wu, Yi-Rui, 2020. "Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: A review," Renewable Energy, Elsevier, vol. 149(C), pages 1107-1119.
    16. Timothy P. Newing & Jodi L. Brewster & Lucy J. Fitschen & James C. Bouwer & Nikolas P. Johnston & Haibo Yu & Gökhan Tolun, 2022. "Redβ177 annealase structure reveals details of oligomerization and λ Red-mediated homologous DNA recombination," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Daniel C. Volke & Román A. Martino & Ekaterina Kozaeva & Andrea M. Smania & Pablo I. Nikel, 2022. "Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0132907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.