IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0119425.html
   My bibliography  Save this article

Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L

Author

Listed:
  • Lun Li
  • Yan Long
  • Libin Zhang
  • Jessica Dalton-Morgan
  • Jacqueline Batley
  • Longjiang Yu
  • Jinling Meng
  • Maoteng Li

Abstract

The prediction of the flowering time (FT) trait in Brassica napus based on genome-wide markers and the detection of underlying genetic factors is important not only for oilseed producers around the world but also for the other crop industry in the rotation system in China. In previous studies the low density and mixture of biomarkers used obstructed genomic selection in B. napus and comprehensive mapping of FT related loci. In this study, a high-density genome-wide SNP set was genotyped from a double-haploid population of B. napus. We first performed genomic prediction of FT traits in B. napus using SNPs across the genome under ten environments of three geographic regions via eight existing genomic predictive models. The results showed that all the models achieved comparably high accuracies, verifying the feasibility of genomic prediction in B. napus. Next, we performed a large-scale mapping of FT related loci among three regions, and found 437 associated SNPs, some of which represented known FT genes, such as AP1 and PHYE. The genes tagged by the associated SNPs were enriched in biological processes involved in the formation of flowers. Epistasis analysis showed that significant interactions were found between detected loci, even among some known FT related genes. All the results showed that our large scale and high-density genotype data are of great practical and scientific values for B. napus. To our best knowledge, this is the first evaluation of genomic selection models in B. napus based on a high-density SNP dataset and large-scale mapping of FT loci.

Suggested Citation

  • Lun Li & Yan Long & Libin Zhang & Jessica Dalton-Morgan & Jacqueline Batley & Longjiang Yu & Jinling Meng & Maoteng Li, 2015. "Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-18, March.
  • Handle: RePEc:plo:pone00:0119425
    DOI: 10.1371/journal.pone.0119425
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119425
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0119425&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0119425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ben J Hayes & Jennie Pryce & Amanda J Chamberlain & Phil J Bowman & Mike E Goddard, 2010. "Genetic Architecture of Complex Traits and Accuracy of Genomic Prediction: Coat Colour, Milk-Fat Percentage, and Type in Holstein Cattle as Contrasting Model Traits," PLOS Genetics, Public Library of Science, vol. 6(9), pages 1-11, September.
    2. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    3. Robert Makowsky & Nicholas M Pajewski & Yann C Klimentidis & Ana I Vazquez & Christine W Duarte & David B Allison & Gustavo de los Campos, 2011. "Beyond Missing Heritability: Prediction of Complex Traits," PLOS Genetics, Public Library of Science, vol. 7(4), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Zou & Yusheng Zhao & Peifa Liu & Lei Shi & Xiaohua Wang & Meng Wang & Jinling Meng & Jochen Christoph Reif, 2016. "Seed Quality Traits Can Be Predicted with High Accuracy in Brassica napus Using Genomic Data," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-22, November.
    2. Alberto Cargnelutti Filho & Cleiton Antonio Wartha & Jéssica Andiara Kleinpaul & Ismael Mario Marcio Neu & Daniela Lixinski Silveira, 2024. "Sample Size to Estimate the Mean and Median of Traits in Canola," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 10(11), pages 123-123, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustavo de los Campos & Yann C Klimentidis & Ana I Vazquez & David B Allison, 2012. "Prediction of Expected Years of Life Using Whole-Genome Markers," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-7, July.
    2. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    3. Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.
    4. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    5. Eliaz, Kfir & Spiegler, Ran, 2022. "On incentive-compatible estimators," Games and Economic Behavior, Elsevier, vol. 132(C), pages 204-220.
    6. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    7. repec:plo:pone00:0083057 is not listed on IDEAS
    8. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    9. Korobilis, Dimitris, 2015. "Quantile forecasts of inflation under model uncertainty," MPRA Paper 64341, University Library of Munich, Germany.
    10. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    11. Damien Rousselière, 2019. "A Flexible Approach to Age Dependence in Organizational Mortality: Comparing the Life Duration for Cooperative and Non-Cooperative Enterprises Using a Bayesian Generalized Additive Discrete Time Survi," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(4), pages 829-855, December.
    12. Chakraborty, Sounak, 2012. "Bayesian multiple response kernel regression model for high dimensional data and its practical applications in near infrared spectroscopy," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2742-2755.
    13. Virginia X. He & Matt P. Wand, 2024. "Bayesian generalized additive model selection including a fast variational option," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 639-668, September.
    14. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    15. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    16. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    17. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
    18. Pfarrhofer, Michael & Stelzer, Anna, 2025. "High-frequency and heteroskedasticity identification in multicountry models: Revisiting spillovers of monetary shocks," Macroeconomic Dynamics, Cambridge University Press, vol. 29, pages 1-1, January.
    19. Luis Castro-Martín & Maria del Mar Rueda & Ramón Ferri-García, 2020. "Inference from Non-Probability Surveys with Statistical Matching and Propensity Score Adjustment Using Modern Prediction Techniques," Mathematics, MDPI, vol. 8(6), pages 1-19, June.
    20. Celso Brunetti & Marc Joëts & Valérie Mignon, 2023. "Reasons Behind Words: OPEC Narratives and the Oil Market," Working Papers hal-04196053, HAL.
    21. Niko Hauzenberger & Michael Pfarrhofer, 2021. "Bayesian State‐Space Modeling for Analyzing Heterogeneous Network Effects of US Monetary Policy," Scandinavian Journal of Economics, Wiley Blackwell, vol. 123(4), pages 1261-1291, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0119425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.