IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0081958.html
   My bibliography  Save this article

Millennial-Scale Temperature Change Velocity in the Continental Northern Neotropics

Author

Listed:
  • Alexander Correa-Metrio
  • Mark Bush
  • Socorro Lozano-García
  • Susana Sosa-Nájera

Abstract

Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively) were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity) for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk for tropical species is higher than at any time in the last 86,000 years.

Suggested Citation

  • Alexander Correa-Metrio & Mark Bush & Socorro Lozano-García & Susana Sosa-Nájera, 2013. "Millennial-Scale Temperature Change Velocity in the Continental Northern Neotropics," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
  • Handle: RePEc:plo:pone00:0081958
    DOI: 10.1371/journal.pone.0081958
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081958
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0081958&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0081958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    2. Matthew W. Schmidt & Howard J. Spero & David W. Lea, 2004. "Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation," Nature, Nature, vol. 428(6979), pages 160-163, March.
    3. Scott R. Loarie & Philip B. Duffy & Healy Hamilton & Gregory P. Asner & Christopher B. Field & David D. Ackerly, 2009. "The velocity of climate change," Nature, Nature, vol. 462(7276), pages 1052-1055, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calebe Pereira Mendes & John Koprowski, 2019. "Does caching strategy vary with microclimate in endangered Mt. Graham red squirrels?," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leslie A. Jones & Clint C. Muhlfeld & Lucy A. Marshall, 2017. "Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada," Climatic Change, Springer, vol. 144(4), pages 641-655, October.
    2. Disha Sachan & Pankaj Kumar & Md. Saquib Saharwardi, 2022. "Contemporary climate change velocity for near-surface temperatures over India," Climatic Change, Springer, vol. 173(3), pages 1-19, August.
    3. Katherine Dagon & Daniel P. Schrag, 2019. "Quantifying the effects of solar geoengineering on vegetation," Climatic Change, Springer, vol. 153(1), pages 235-251, March.
    4. Loehle, Craig, 2018. "Disequilibrium and relaxation times for species responses to climate change," Ecological Modelling, Elsevier, vol. 384(C), pages 23-29.
    5. Alejandro Ordonez & John Williams, 2013. "Projected climate reshuffling based on multivariate climate-availability, climate-analog, and climate-velocity analyses: implications for community disaggregation," Climatic Change, Springer, vol. 119(3), pages 659-675, August.
    6. Eli D Lazarus & Brian J McGill, 2014. "Pushing the Pace of Tree Species Migration," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-7, August.
    7. R. Iestyn Woolway, 2023. "The pace of shifting seasons in lakes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Karyn Tabor & Jennifer Hewson & Hsin Tien & Mariano González-Roglich & David Hole & John W. Williams, 2018. "Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation," Land, MDPI, vol. 7(3), pages 1-14, July.
    9. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    10. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    11. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    12. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    13. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    14. Mouhamadou Bamba Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    15. Mouhamadou Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    16. Hao Wang & Guohua Liu & Zongshan Li & Xin Ye & Bojie Fu & Yihe Lü, 2017. "Analysis of the Driving Forces in Vegetation Variation in the Grain for Green Program Region, China," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    17. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    18. Xiumei Wang & Jianjun Dong & Taogetao Baoyin & Yuhai Bao, 2019. "Estimation and Climate Factor Contribution of Aboveground Biomass in Inner Mongolia’s Typical/Desert Steppes," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    19. Anna Yusa & Peter Berry & June J.Cheng & Nicholas Ogden & Barrie Bonsal & Ronald Stewart & Ruth Waldick, 2015. "Climate Change, Drought and Human Health in Canada," IJERPH, MDPI, vol. 12(7), pages 1-54, July.
    20. A. Ogden & J. Innes, 2008. "Climate change adaptation and regional forest planning in southern Yukon, Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(8), pages 833-861, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0081958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.