IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0064968.html
   My bibliography  Save this article

Simple Process-Based Simulators for Generating Spatial Patterns of Habitat Loss and Fragmentation: A Review and Introduction to the G-RaFFe Model

Author

Listed:
  • Guy Pe'er
  • Gustavo A Zurita
  • Lucia Schober
  • Maria I Bellocq
  • Maximilian Strer
  • Michael Müller
  • Sandro Pütz

Abstract

Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model “G-RaFFe” generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature.

Suggested Citation

  • Guy Pe'er & Gustavo A Zurita & Lucia Schober & Maria I Bellocq & Maximilian Strer & Michael Müller & Sandro Pütz, 2013. "Simple Process-Based Simulators for Generating Spatial Patterns of Habitat Loss and Fragmentation: A Review and Introduction to the G-RaFFe Model," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-14, May.
  • Handle: RePEc:plo:pone00:0064968
    DOI: 10.1371/journal.pone.0064968
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064968
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0064968&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0064968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guy Pe'er & Klaus Henle & Claudia Dislich & Karin Frank, 2011. "Breaking Functional Connectivity into Components: A Novel Approach Using an Individual-Based Model, and First Outcomes," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salecker, Jan & Dislich, Claudia & Wiegand, Kerstin & Meyer, Katrin M. & Pe'er, Guy, 2019. "EFForTS-LGraf: A landscape generator for creating smallholder-driven land-use mosaics," EFForTS Discussion Paper Series 29, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    2. Dislich, Claudia & Hettig, Elisabeth & Heinonen, Johannes & Lay, Jann & Meyer, Katrin M. & Tarigan, Suria & Wiegand, Kerstin, 2015. "Towards an integrated ecological-economic land-use change model," EFForTS Discussion Paper Series 17, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    3. Langhammer, Maria & Thober, Jule & Lange, Martin & Frank, Karin & Grimm, Volker, 2019. "Agricultural landscape generators for simulation models: A review of existing solutions and an outline of future directions," Ecological Modelling, Elsevier, vol. 393(C), pages 135-151.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katherine A. Zeller & David W. Wattles & Javan M. Bauder & Stephen DeStefano, 2020. "Forecasting Seasonal Habitat Connectivity in a Developing Landscape," Land, MDPI, vol. 9(7), pages 1-20, July.
    2. Bialozyt, Ronald & Flinkerbusch, Sebastian & Niggemann, Marc & Heymann, Eckhard W., 2014. "Predicting the seed shadows of a Neotropical tree species dispersed by primates using an agent-based model with internal decision making for movements," Ecological Modelling, Elsevier, vol. 278(C), pages 74-84.
    3. Langhammer, Maria & Thober, Jule & Lange, Martin & Frank, Karin & Grimm, Volker, 2019. "Agricultural landscape generators for simulation models: A review of existing solutions and an outline of future directions," Ecological Modelling, Elsevier, vol. 393(C), pages 135-151.
    4. Yang, Tianxiang & Jing, Dong & Wang, Shoubing, 2015. "Applying and exploring a new modeling approach of functional connectivity regarding ecological network: A case study on the dynamic lines of space syntax," Ecological Modelling, Elsevier, vol. 318(C), pages 126-137.
    5. Allen, Corrie & Gonzales, Rodolphe & Parrott, Lael, 2020. "Modelling the contribution of ephemeral wetlands to landscape connectivity," Ecological Modelling, Elsevier, vol. 419(C).
    6. Chiara Catalano & Mihaela Meslec & Jules Boileau & Riccardo Guarino & Isabella Aurich & Nathalie Baumann & Frédéric Chartier & Pascale Dalix & Sophie Deramond & Patrick Laube & Angela Ka Ki Lee & Pasc, 2021. "Smart Sustainable Cities of the New Millennium: Towards Design for Nature," Circular Economy and Sustainability,, Springer.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0064968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.