IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0062495.html
   My bibliography  Save this article

SNP Set Association Analysis for Genome-Wide Association Studies

Author

Listed:
  • Min Cai
  • Hui Dai
  • Yongyong Qiu
  • Yang Zhao
  • Ruyang Zhang
  • Minjie Chu
  • Juncheng Dai
  • Zhibin Hu
  • Hongbing Shen
  • Feng Chen

Abstract

Genome-wide association study (GWAS) is a promising approach for identifying common genetic variants of the diseases on the basis of millions of single nucleotide polymorphisms (SNPs). In order to avoid low power caused by overmuch correction for multiple comparisons in single locus association study, some methods have been proposed by grouping SNPs together into a SNP set based on genomic features, then testing the joint effect of the SNP set. We compare the performances of principal component analysis (PCA), supervised principal component analysis (SPCA), kernel principal component analysis (KPCA), and sliced inverse regression (SIR). Simulated SNP sets are generated under scenarios of 0, 1 and ≥2 causal SNPs model. Our simulation results show that all of these methods can control the type I error at the nominal significance level. SPCA is always more powerful than the other methods at different settings of linkage disequilibrium structures and minor allele frequency of the simulated datasets. We also apply these four methods to a real GWAS of non-small cell lung cancer (NSCLC) in Han Chinese population

Suggested Citation

  • Min Cai & Hui Dai & Yongyong Qiu & Yang Zhao & Ruyang Zhang & Minjie Chu & Juncheng Dai & Zhibin Hu & Hongbing Shen & Feng Chen, 2013. "SNP Set Association Analysis for Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
  • Handle: RePEc:plo:pone00:0062495
    DOI: 10.1371/journal.pone.0062495
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062495
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0062495&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0062495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bair, Eric & Hastie, Trevor & Paul, Debashis & Tibshirani, Robert, 2006. "Prediction by Supervised Principal Components," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 119-137, March.
    2. Audrey E Hendricks & Josée Dupuis & Mayetri Gupta & Mark W Logue & Kathryn L Lunetta, 2012. "A Comparison of Gene Region Simulation Methods," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
    3. Yang Zhao & Feng Chen & Rihong Zhai & Xihong Lin & Nancy Diao & David C Christiani, 2012. "Association Test Based on SNP Set: Logistic Kernel Machine Based Test vs. Principal Component Analysis," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiuyi Zhang & Yang Zhao & Ruyang Zhang & Yongyue Wei & Honggang Yi & Fang Shao & Feng Chen, 2016. "A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-13, June.
    2. Kui Shen & Nan Song & Youngchul Kim & Chunqiao Tian & Shara D Rice & Michael J Gabrin & W Fraser Symmans & Lajos Pusztai & Jae K Lee, 2012. "A Systematic Evaluation of Multi-Gene Predictors for the Pathological Response of Breast Cancer Patients to Chemotherapy," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    3. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    4. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    5. Hatem Jemmali & Mohamed Salah Matoussi, 2012. "A Multidimensional Analysis of Water Poverty at A Local Scale- Application of Improved Water Poverty Index for Tunisia," Working Papers 730, Economic Research Forum, revised 2012.
    6. Emile du Plessis & Ulrich Fritsche, 2025. "New forecasting methods for an old problem: Predicting 147 years of systemic financial crises," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 3-40, January.
    7. Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
    8. Anish Agarwal & Keegan Harris & Justin Whitehouse & Zhiwei Steven Wu, 2023. "Adaptive Principal Component Regression with Applications to Panel Data," Papers 2307.01357, arXiv.org, revised Aug 2024.
    9. Luke Hartigan & Tom Rosewall, 2024. "Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator," Working Papers 2024-15, University of Sydney, School of Economics.
    10. Cheng, Cheng, 2009. "Internal validation inferences of significant genomic features in genome-wide screening," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 788-800, January.
    11. Seungchul Baek & Yen‐Yi Ho & Yanyuan Ma, 2020. "Using sufficient direction factor model to analyze latent activities associated with breast cancer survival," Biometrics, The International Biometric Society, vol. 76(4), pages 1340-1350, December.
    12. Yu Takagi & Hirokazu Matsuda & Yukio Taniguchi & Hiroaki Iwaisaki, 2014. "Predicting the Phenotypic Values of Physiological Traits Using SNP Genotype and Gene Expression Data in Mice," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-17, December.
    13. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    14. Kitlinski, Tobias & an de Meulen, Philipp, 2015. "The role of targeted predictors for nowcasting GDP with bridge models: Application to the Euro area," Ruhr Economic Papers 559, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    15. Ma, Chenjie & Menke, Jan-Hendrik & Dasenbrock, Johannes & Braun, Martin & Haslbeck, Matthias & Schmid, Karl-Heinz, 2019. "Evaluation of energy losses in low voltage distribution grids with high penetration of distributed generation," Applied Energy, Elsevier, vol. 256(C).
    16. Jialing Huang & Yihang Li & Yu Shi & Lihong Wang & Qing Zhou & Xiaohua Huang, 2019. "Effects of nutrient level and planting density on population relationship in soybean and wheat intercropping populations," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-12, December.
    17. Hui Dai & Yang Zhao & Cheng Qian & Min Cai & Ruyang Zhang & Minjie Chu & Juncheng Dai & Zhibin Hu & Hongbing Shen & Feng Chen, 2013. "Weighted SNP Set Analysis in Genome-Wide Association Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-7, September.
    18. Xu-Qing Liu & Xiao-Cai Wang & Li Tao & Feng-Xian An & Gui-Ren Jiang, 2024. "Alleviating conditional independence assumption of naive Bayes," Statistical Papers, Springer, vol. 65(5), pages 2835-2863, July.
    19. Antoniadis, Anestis & Fryzlewicz, Piotr & Letué, Frédérique, 2010. "The Dantzig selector in Cox's proportional hazards model," LSE Research Online Documents on Economics 30992, London School of Economics and Political Science, LSE Library.
    20. Massacci, Daniele & Kapetanios, George, 2024. "Forecasting in factor augmented regressions under structural change," International Journal of Forecasting, Elsevier, vol. 40(1), pages 62-76.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0062495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.