IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0059384.html
   My bibliography  Save this article

Universities Scale Like Cities

Author

Listed:
  • Anthony F J van Raan

Abstract

Recent studies of urban scaling show that important socioeconomic city characteristics such as wealth and innovation capacity exhibit a nonlinear, particularly a power law scaling with population size. These nonlinear effects are common to all cities, with similar power law exponents. These findings mean that the larger the city, the more disproportionally they are places of wealth and innovation. Local properties of cities cause a deviation from the expected behavior as predicted by the power law scaling. In this paper we demonstrate that universities show a similar behavior as cities in the distribution of the ‘gross university income’ in terms of total number of citations over ‘size’ in terms of total number of publications. Moreover, the power law exponents for university scaling are comparable to those for urban scaling. We find that deviations from the expected behavior can indeed be explained by specific local properties of universities, particularly the field-specific composition of a university, and its quality in terms of field-normalized citation impact. By studying both the set of the 500 largest universities worldwide and a specific subset of these 500 universities -the top-100 European universities- we are also able to distinguish between properties of universities with as well as without selection of one specific local property, the quality of a university in terms of its average field-normalized citation impact. It also reveals an interesting observation concerning the working of a crucial property in networked systems, preferential attachment.

Suggested Citation

  • Anthony F J van Raan, 2013. "Universities Scale Like Cities," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-14, March.
  • Handle: RePEc:plo:pone00:0059384
    DOI: 10.1371/journal.pone.0059384
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059384
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0059384&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0059384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ludo Waltman & Clara Calero‐Medina & Joost Kosten & Ed C.M. Noyons & Robert J.W. Tijssen & Nees Jan van Eck & Thed N. van Leeuwen & Anthony F.J. van Raan & Martijn S. Visser & Paul Wouters, 2012. "The Leiden ranking 2011/2012: Data collection, indicators, and interpretation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(12), pages 2419-2432, December.
    2. Anthony F.J. van Raan, 2008. "Bibliometric statistical properties of the 100 largest European research universities: Prevalent scaling rules in the science system," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(3), pages 461-475, February.
    3. Anthony F.J. van Raan, 2006. "Statistical properties of bibliometric indicators: Research group indicator distributions and correlations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 408-430, February.
    4. J Sylvan Katz, 2000. "Scale-independent indicators and research evaluation," Science and Public Policy, Oxford University Press, vol. 27(1), pages 23-36, February.
    5. Ton van Raan & Thed van Leeuwen & Martijn Visser, 2011. "Non-English papers decrease rankings," Nature, Nature, vol. 469(7328), pages 34-34, January.
    6. Ludo Waltman & Clara Calero-Medina & Joost Kosten & Ed C.M. Noyons & Robert J.W. Tijssen & Nees Jan Eck & Thed N. Leeuwen & Anthony F.J. Raan & Martijn S. Visser & Paul Wouters, 2012. "The Leiden ranking 2011/2012: Data collection, indicators, and interpretation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2419-2432, December.
    7. Katz, J. Sylvan, 1999. "The self-similar science system1," Research Policy, Elsevier, vol. 28(5), pages 501-517, June.
    8. Anthony F.J. van Raan, 2008. "Scaling rules in the science system: Influence of field‐specific citation characteristics on the impact of research groups," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(4), pages 565-576, February.
    9. Perc, Matjaž, 2010. "Growth and structure of Slovenia’s scientific collaboration network," Journal of Informetrics, Elsevier, vol. 4(4), pages 475-482.
    10. Luis Bettencourt & Geoffrey West, 2010. "A unified theory of urban living," Nature, Nature, vol. 467(7318), pages 912-913, October.
    11. Anthony F. J. Raan & Thed N. Leeuwen & Martijn S. Visser, 2011. "Severe language effect in university rankings: particularly Germany and France are wronged in citation-based rankings," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 495-498, August.
    12. Luís M A Bettencourt & José Lobo & Deborah Strumsky & Geoffrey B West, 2010. "Urban Scaling and Its Deviations: Revealing the Structure of Wealth, Innovation and Crime across Cities," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    13. Manfred Bonitz, 2005. "Ten years Matthew effect for countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 375-379, August.
    14. Anthony F. J. van Raan, 2006. "Performance‐related differences of bibliometric statistical properties of research groups: Cumulative advantages and hierarchically layered networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(14), pages 1919-1935, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillermo Armando Ronda-Pupo, 2017. "The effect of document types and sizes on the scaling relationship between citations and co-authorship patterns in management journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1191-1207, March.
    2. Frenken, Koen & Heimeriks, Gaston J. & Hoekman, Jarno, 2017. "What drives university research performance? An analysis using the CWTS Leiden Ranking data," Journal of Informetrics, Elsevier, vol. 11(3), pages 859-872.
    3. Benedetto Lepori & Aldo Geuna & Antonietta Mira, 2018. "Scientific Output of US and European Universities Scales Super-Linearly with Resources," SPRU Working Paper Series 2018-22, SPRU - Science Policy Research Unit, University of Sussex Business School.
    4. Hongguang Dong & Menghui Li & Ru Liu & Chensheng Wu & Jinshan Wu, 2017. "Allometric scaling in scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 583-594, July.
    5. Guillermo Armando Ronda-Pupo, 2020. "The performance of Latin American research on economics & business," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 573-590, January.
    6. Taylor, Ryan C. & Liang, Xiaofan & Laubichler, Manfred D. & West, Geoffrey B. & Kempes, Christopher P. & Dumas, Marion, 2021. "Systematic shifts in scaling behavior based on organizational strategy in universities," LSE Research Online Documents on Economics 112604, London School of Economics and Political Science, LSE Library.
    7. Benedetto Lepori & Aldo Geuna & Antonietta Mira, 2019. "Scientific output scales with resources. A comparison of US and European universities," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-18, October.
    8. J. Sylvan Katz & Guillermo Armando Ronda-Pupo, 2019. "Cooperation, scale-invariance and complex innovation systems: a generalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1045-1065, November.
    9. Önder Nomaler & Koen Frenken & Gaston Heimeriks, 2014. "On Scaling of Scientific Knowledge Production in U.S. Metropolitan Areas," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-6, October.
    10. Huang, Ding-wei, 2016. "Positive correlation between quality and quantity in academic journals," Journal of Informetrics, Elsevier, vol. 10(2), pages 329-335.
    11. Bonaccorsi, Andrea & Belingheri, Paola & Secondi, Luca, 2021. "The research productivity of universities. A multilevel and multidisciplinary analysis on European institutions," Journal of Informetrics, Elsevier, vol. 15(2).
    12. Gricelda Herrera-Franco & Néstor Montalván-Burbano & Carlos Mora-Frank & Lady Bravo-Montero, 2021. "Scientific Research in Ecuador: A Bibliometric Analysis," Publications, MDPI, vol. 9(4), pages 1-34, December.
    13. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & M. Dolores León & Pedro J. Moreno, 2017. "The geography of university scientific production in Europe: an exploration in the field of Food Science and Technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 215-240, July.
    14. Guillermo Armando Ronda-Pupo & J. Sylvan Katz, 2018. "The power law relationship between citation impact and multi-authorship patterns in articles in Information Science & Library Science journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 919-932, March.
    15. Nijhum, Farzana & Westbrook, Cherie & Noble, Bram & Belcher, Ken & Lloyd-Smith, Patrick, 2021. "Evaluation of alternative land-use scenarios using an ecosystem services-based strategic environmental assessment approach," Land Use Policy, Elsevier, vol. 108(C).
    16. Vieira, Elizabeth S. & Lepori, Benedetto, 2016. "The growth process of higher education institutions and public policies," Journal of Informetrics, Elsevier, vol. 10(1), pages 286-298.
    17. Guillermo Armando Ronda-Pupo, 2017. "The citation-based impact of complex innovation systems scales with the size of the system," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 141-151, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jian, 2014. "Unpacking the Matthew effect in citations," Journal of Informetrics, Elsevier, vol. 8(2), pages 329-339.
    2. Vieira, Elizabeth S. & Lepori, Benedetto, 2016. "The growth process of higher education institutions and public policies," Journal of Informetrics, Elsevier, vol. 10(1), pages 286-298.
    3. Antonoyiannakis, Manolis, 2018. "Impact Factors and the Central Limit Theorem: Why citation averages are scale dependent," Journal of Informetrics, Elsevier, vol. 12(4), pages 1072-1088.
    4. Önder Nomaler & Koen Frenken & Gaston Heimeriks, 2014. "On Scaling of Scientific Knowledge Production in U.S. Metropolitan Areas," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-6, October.
    5. Lee, You-Na & Walsh, John P. & Wang, Jian, 2015. "Creativity in scientific teams: Unpacking novelty and impact," Research Policy, Elsevier, vol. 44(3), pages 684-697.
    6. Leporia, Benedetto & Geuna, Aldo & Mira, Antonietta, 2018. "Scientific Output of US and European Universities Scales Super-linearly with Resources," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201806, University of Turin.
    7. Sylvan Katz, 2012. "Science Policy, Complex Innovation Systems and Performance Measures," SPRU Working Paper Series 198, SPRU - Science Policy Research Unit, University of Sussex Business School.
    8. Jesper W. Schneider & Thed Leeuwen & Martijn Visser & Kaare Aagaard, 2019. "Examining national citation impact by comparing developments in a fixed and a dynamic journal set," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 973-985, May.
    9. Guillermo Armando Ronda-Pupo & J. Sylvan Katz, 2018. "The power law relationship between citation impact and multi-authorship patterns in articles in Information Science & Library Science journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 919-932, March.
    10. Calabrese, Armando & Capece, Guendalina & Costa, Roberta & Di Pillo, Francesca & Giuffrida, Stefania, 2018. "A ‘power law’ based method to reduce size-related bias in indicators of knowledge performance: An application to university research assessment," Journal of Informetrics, Elsevier, vol. 12(4), pages 1263-1281.
    11. Saeed Roshani & Mohammad-Reza Bagherylooieh & Melika Mosleh & Mario Coccia, 2021. "What is the relationship between research funding and citation-based performance? A comparative analysis between critical disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7859-7874, September.
    12. Hongguang Dong & Menghui Li & Ru Liu & Chensheng Wu & Jinshan Wu, 2017. "Allometric scaling in scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 583-594, July.
    13. Gao, Xia & Guan, Jiancheng, 2009. "A scale-independent analysis of the performance of the Chinese innovation system," Journal of Informetrics, Elsevier, vol. 3(4), pages 321-331.
    14. Alves, L.G.A. & Ribeiro, H.V. & Lenzi, E.K. & Mendes, R.S., 2014. "Empirical analysis on the connection between power-law distributions and allometries for urban indicators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 175-182.
    15. Huang, Siyu & Shi, Yi & Chen, Qinghua & Li, Xiaomeng, 2022. "The growth path of high-tech industries: Statistical laws and evolution demands," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    16. Marco Cavallaro & Benedetto Lepori, 2021. "Institutional barriers to participation in EU framework programs: contrasting the Swiss and UK cases," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1311-1328, February.
    17. Ying Guo & Xiantao Xiao, 2022. "Author-level altmetrics for the evaluation of Chinese scholars," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 973-990, February.
    18. Jeffrey Demaine, 2022. "Fractionalization of research impact reveals global trends in university collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2235-2247, May.
    19. Daan Francois Toerien, 2022. "Linking Entrepreneurial Activities and Community Prosperity/Poverty in United States Counties: Use of the Enterprise Dependency Index," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    20. Maziar Montazerian & Edgar Dutra Zanotto & Hellmut Eckert, 2019. "A new parameter for (normalized) evaluation of H-index: countries as a case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1065-1078, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0059384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.