IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0052137.html
   My bibliography  Save this article

A Bayesian Model for Pooling Gene Expression Studies That Incorporates Co-Regulation Information

Author

Listed:
  • Erin M Conlon
  • Bradley L Postier
  • Barbara A Methé
  • Kelly P Nevin
  • Derek R Lovley

Abstract

Current Bayesian microarray models that pool multiple studies assume gene expression is independent of other genes. However, in prokaryotic organisms, genes are arranged in units that are co-regulated (called operons). Here, we introduce a new Bayesian model for pooling gene expression studies that incorporates operon information into the model. Our Bayesian model borrows information from other genes within the same operon to improve estimation of gene expression. The model produces the gene-specific posterior probability of differential expression, which is the basis for inference. We found in simulations and in biological studies that incorporating co-regulation information improves upon the independence model. We assume that each study contains two experimental conditions: a treatment and control. We note that there exist environmental conditions for which genes that are supposed to be transcribed together lose their operon structure, and that our model is best carried out for known operon structures.

Suggested Citation

  • Erin M Conlon & Bradley L Postier & Barbara A Methé & Kelly P Nevin & Derek R Lovley, 2012. "A Bayesian Model for Pooling Gene Expression Studies That Incorporates Co-Regulation Information," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
  • Handle: RePEc:plo:pone00:0052137
    DOI: 10.1371/journal.pone.0052137
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0052137
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0052137&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0052137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ibrahim J. G. & Chen M-H. & Gray R. J., 2002. "Bayesian Models for Gene Expression With DNA Microarray Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 88-99, March.
    2. Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen Ventz & Rahul Mazumder & Lorenzo Trippa, 2022. "Integration of survival data from multiple studies," Biometrics, The International Biometric Society, vol. 78(4), pages 1365-1376, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. HyungJun Cho & Jaewoo Kang & Jae Lee, 2009. "Empirical Bayes analysis of unreplicated microarray data," Computational Statistics, Springer, vol. 24(3), pages 393-408, August.
    2. Ji, Yuan & Tsui, Kam-Wah & Kim, KyungMann, 2006. "A two-stage empirical Bayes method for identifying differentially expressed genes," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3592-3604, August.
    3. Liang Yulan & Kelemen Arpad, 2016. "Bayesian state space models for dynamic genetic network construction across multiple tissues," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 273-290, August.
    4. E. M. Conlon & B. L. Postier & B. A. Methe & K. P. Nevin & D. R. Lovley, 2009. "Hierarchical Bayesian meta-analysis models for cross-platform microarray studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1067-1085.
    5. Izmirlian, Grant, 2020. "Strong consistency and asymptotic normality for quantities related to the Benjamini–Hochberg false discovery rate procedure," Statistics & Probability Letters, Elsevier, vol. 160(C).
    6. Debashis Ghosh & Arul Chinnaiyan, 2004. "Covariate adjustment in the analysis of microarray data from clinical studies," The University of Michigan Department of Biostatistics Working Paper Series 1030, Berkeley Electronic Press.
    7. Pounds Stanley B. & Gao Cuilan L. & Zhang Hui, 2012. "Empirical Bayesian Selection of Hypothesis Testing Procedures for Analysis of Sequence Count Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-32, October.
    8. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    9. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    10. Daniel Yekutieli, 2015. "Bayesian tests for composite alternative hypotheses in cross-tabulated data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 287-301, June.
    11. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    12. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    13. Werft, W. & Benner, A. & Kopp-Schneider, A., 2012. "On the identification of predictive biomarkers: Detecting treatment-by-gene interaction in high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1275-1286.
    14. Nott, David J. & Yu, Zeming & Chan, Eva & Cotsapas, Chris & Cowley, Mark J. & Pulvers, Jeremy & Williams, Rohan & Little, Peter, 2007. "Hierarchical Bayes variable selection and microarray experiments," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 852-872, April.
    15. He, Yi & Pan, Wei & Lin, Jizhen, 2006. "Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 641-658, November.
    16. Hossain Ahmed & Beyene Joseph, 2013. "Estimation of weighted log partial area under the ROC curve and its application to MicroRNA expression data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(6), pages 743-755, December.
    17. Kafadar, Karen & Phang, Tzulip, 2003. "Transformations, background estimation, and process effects in the statistical analysis of microarrays," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 313-338, October.
    18. Gordon, Alexander & Chen, Linlin & Glazko, Galina & Yakovlev, Andrei, 2009. "Balancing type one and two errors in multiple testing for differential expression of genes," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1622-1629, March.
    19. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    20. Volodymyr Melnykov & Xuwen Zhu, 2019. "An extension of the K-means algorithm to clustering skewed data," Computational Statistics, Springer, vol. 34(1), pages 373-394, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0052137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.