IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v44y2003i1-2p313-338.html

Transformations, background estimation, and process effects in the statistical analysis of microarrays

Author

Listed:
  • Kafadar, Karen
  • Phang, Tzulip

Abstract

No abstract is available for this item.

Suggested Citation

  • Kafadar, Karen & Phang, Tzulip, 2003. "Transformations, background estimation, and process effects in the statistical analysis of microarrays," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 313-338, October.
  • Handle: RePEc:eee:csdana:v:44:y:2003:i:1-2:p:313-338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(03)00069-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan Knight, 2001. "When the chips are down," Nature, Nature, vol. 410(6831), pages 860-861, April.
    2. Amaratunga D. & Cabrera J., 2001. "Analysis of Data From Viral DNA Microchips," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1161-1170, December.
    3. Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yihuan & Iglewicz, Boris & Chervoneva, Inna, 2014. "Robust estimation of the parameters of g-and-h distributions, with applications to outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 66-80.
    2. Lian, I.B. & Chang, C.J. & Liang, Y.J. & Yang, M.J. & Fann, C.S.J., 2007. "Identifying differentially expressed genes in dye-swapped microarray experiments of small sample size," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2602-2620, February.
    3. He, Yi & Pan, Wei & Lin, Jizhen, 2006. "Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 641-658, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    2. Pounds Stanley B. & Gao Cuilan L. & Zhang Hui, 2012. "Empirical Bayesian Selection of Hypothesis Testing Procedures for Analysis of Sequence Count Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-32, October.
    3. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    4. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    5. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    6. Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.
    7. Campbell R. Harvey & Yan Liu & Heqing Zhu, 2014. ". . . and the Cross-Section of Expected Returns," NBER Working Papers 20592, National Bureau of Economic Research, Inc.
    8. Patrick Kline & Christopher Walters, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Papers 1907.06622, arXiv.org, revised Jul 2019.
    9. Daniel Yekutieli, 2015. "Bayesian tests for composite alternative hypotheses in cross-tabulated data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 287-301, June.
    10. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    11. Ruth Heller & Saharon Rosset, 2021. "Optimal control of false discovery criteria in the two‐group model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 133-155, February.
    12. Debashis Ghosh & Arul Chinnaiyan, 2004. "Covariate adjustment in the analysis of microarray data from clinical studies," The University of Michigan Department of Biostatistics Working Paper Series 1030, Berkeley Electronic Press.
    13. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    14. Werft, W. & Benner, A. & Kopp-Schneider, A., 2012. "On the identification of predictive biomarkers: Detecting treatment-by-gene interaction in high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1275-1286.
    15. Sean Chang & James O. Berger, 2020. "Frequentist Properties of Bayesian Multiplicity Control for Multiple Testing of Normal Means," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 310-329, August.
    16. repec:dau:papers:123456789/13437 is not listed on IDEAS
    17. Sairam Rayaprolu & Zhiyi Chi, 2021. "False Discovery Variance Reduction in Large Scale Simultaneous Hypothesis Tests," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 711-733, September.
    18. Laurent Barras & Olivier Scaillet & Russ Wermers, 2010. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," Journal of Finance, American Finance Association, vol. 65(1), pages 179-216, February.
    19. Kim, Donggyu & Zhang, Chunming, 2014. "Adaptive linear step-up multiple testing procedure with the bias-reduced estimator," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 31-39.
    20. Han, Shengtong & Zhang, Hongmei & Karmaus, Wilfried & Roberts, Graham & Arshad, Hasan, 2017. "Adjusting background noise in cluster analyses of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 93-104.
    21. Nikolaos Ignatiadis & Wolfgang Huber, 2021. "Covariate powered cross‐weighted multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 720-751, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:44:y:2003:i:1-2:p:313-338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.