IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0050377.html
   My bibliography  Save this article

Mathematical Modeling of Triphasic Viral Dynamics in Patients with HBeAg-Positive Chronic Hepatitis B Showing Response to 24-Week Clevudine Therapy

Author

Listed:
  • Hwi Young Kim
  • Hee-Dae Kwon
  • Tae Soo Jang
  • Jisun Lim
  • Hyo-Suk Lee

Abstract

Background: Modeling of short-term viral dynamics of hepatitis B with traditional biphasic model might be insufficient to explain long-term viral dynamics. The aim was to develop a novel method of mathematical modeling to shed light on the dissociation between early and long-term dynamics in previous studies. Methods: We investigated the viral decay pattern in 50 patients from the phase III clinical trial of 24-week clevudine therapy, who showed virological response and HBsAg decline. Immune effectors were added as a new compartment in the model equations. We determined some parameter values in the model using the non-linear least square minimization method. Results: Median baseline viral load was 8.526 Log10copies/mL, and on-treatment viral load decline was 5.683 Log10copies/mL. The median half-life of free virus was 24.89 hours. The median half-life of infected hepatocytes was 7.39 days. The viral decay patterns were visualized as triphasic curves with decreasing slopes over time: fastest decay in the first phase; slowest in the third phase; the second phase in between. Conclusions: In the present study, mathematical modeling of hepatitis B in patients with virological response and HBsAg decline during 24-week antiviral therapy showed triphasic viral dynamics with direct introduction of immune effectors as a new compartment, which was thought to reflect the reduction of clearance rate of infected cells over time. This modeling method seems more appropriate to describe long-term viral dynamics compared to the biphasic model, and needs further validation.

Suggested Citation

  • Hwi Young Kim & Hee-Dae Kwon & Tae Soo Jang & Jisun Lim & Hyo-Suk Lee, 2012. "Mathematical Modeling of Triphasic Viral Dynamics in Patients with HBeAg-Positive Chronic Hepatitis B Showing Response to 24-Week Clevudine Therapy," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
  • Handle: RePEc:plo:pone00:0050377
    DOI: 10.1371/journal.pone.0050377
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050377
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0050377&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0050377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alan S. Perelson & Paulina Essunger & Yunzhen Cao & Mika Vesanen & Arlene Hurley & Kalle Saksela & Martin Markowitz & David D. Ho, 1997. "Decay characteristics of HIV-1-infected compartments during combination therapy," Nature, Nature, vol. 387(6629), pages 188-191, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John E Pearson & Paul Krapivsky & Alan S Perelson, 2011. "Stochastic Theory of Early Viral Infection: Continuous versus Burst Production of Virions," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-17, February.
    2. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    3. A. M. Elaiw & E. Kh. Elnahary, 2019. "Analysis of General Humoral Immunity HIV Dynamics Model with HAART and Distributed Delays," Mathematics, MDPI, vol. 7(2), pages 1-35, February.
    4. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    5. Ahmed M. Elaiw & Taofeek O. Alade & Saud M. Alsulami, 2018. "Global Stability of Within-Host Virus Dynamics Models with Multitarget Cells," Mathematics, MDPI, vol. 6(7), pages 1-19, July.
    6. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    7. Samson, Adeline & Lavielle, Marc & Mentre, France, 2006. "Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1562-1574, December.
    8. Nicolas Rapin & Ole Lund & Massimo Bernaschi & Filippo Castiglione, 2010. "Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-14, April.
    9. Derksen, Laura & Muula, Adamson & van Oosterhout, Joep, 2022. "Love in the time of HIV: How beliefs about externalities impact health behavior," Journal of Development Economics, Elsevier, vol. 159(C).
    10. Baleanu, Dumitru & Hasanabadi, Manijeh & Mahmoudzadeh Vaziri, Asadollah & Jajarmi, Amin, 2023. "A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    11. Jessica M Conway & Daniel Coombs, 2011. "A Stochastic Model of Latently Infected Cell Reactivation and Viral Blip Generation in Treated HIV Patients," PLOS Computational Biology, Public Library of Science, vol. 7(4), pages 1-15, April.
    12. James B Gilmore & Anthony D Kelleher & David A Cooper & John M Murray, 2013. "Explaining the Determinants of First Phase HIV Decay Dynamics through the Effects of Stage-dependent Drug Action," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-12, March.
    13. Chowdhury, Sourav & Ghosh, Jayanta Kumar & Ghosh, Uttam, 2024. "Co-infection dynamics between HIV-HTLV-I disease with the effects of Cytotoxic T-lymphocytes, saturated incidence rate and study of optimal control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 195-218.
    14. Dagne Getachew & Huang Yangxin, 2012. "Bayesian inference for a nonlinear mixed-effects Tobit model with multivariate skew-t distributions: application to AIDS studies," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-24, September.
    15. Tao Lu & Yangxin Huang & Min Wang & Feng Qian, 2014. "A refined parameter estimating approach for HIV dynamic model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1645-1657, August.
    16. Attaullah, & Jan, Rashid & Yüzbaşı, Şuayip, 2021. "Dynamical behaviour of HIV Infection with the influence of variable source term through Galerkin method," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    18. Rebecca M. D'Amato & Richard T. D'Aquila & Lawrence M. Wein, 2000. "Management of Antiretroviral Therapy for HIV Infection: Analyzing When to Change Therapy," Management Science, INFORMS, vol. 46(9), pages 1200-1213, September.
    19. Chen, Wei & Zhang, Long & Wang, Ning & Teng, Zhidong, 2024. "Bifurcation analysis and chaos for a double-strains HIV coinfection model with intracellular delays, saturated incidence and Logistic growth," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 617-641.
    20. Huang, Yangxin, 2008. "Long-term HIV dynamic models incorporating drug adherence and resistance to treatment for prediction of virological responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3765-3778, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0050377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.