IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0027108.html
   My bibliography  Save this article

Cost-Effectiveness of Internet-Based Self-Management Compared with Usual Care in Asthma

Author

Listed:
  • Victor van der Meer
  • Wilbert B van den Hout
  • Moira J Bakker
  • Klaus F Rabe
  • Peter J Sterk
  • Willem J J Assendelft
  • Job Kievit
  • Jacob K Sont
  • on behalf of the SMASHING (Self-Management in Asthma Supported by Hospitals, ICT, Nurses and General Practitioners) Study Group

Abstract

Background: Effectiveness of Internet-based self-management in patients with asthma has been shown, but its cost-effectiveness is unknown. We conducted a cost-effectiveness analysis of Internet-based asthma self-management compared with usual care. Methodology and Principal Findings: Cost-effectiveness analysis alongside a randomized controlled trial, with 12 months follow-up. Patients were aged 18 to 50 year and had physician diagnosed asthma. The Internet-based self-management program involved weekly on-line monitoring of asthma control with self-treatment advice, remote Web communications, and Internet-based information. We determined quality adjusted life years (QALYs) as measured by the EuroQol-5D and costs for health care use and absenteeism. We performed a detailed cost price analysis for the primary intervention. QALYs did not statistically significantly differ between the Internet group and usual care: difference 0.024 (95% CI, −0.016 to 0.065). Costs of the Internet-based intervention were $254 (95% CI, $243 to $265) during the period of 1 year. From a societal perspective, the cost difference was $641 (95% CI, $−1957 to $3240). From a health care perspective, the cost difference was $37 (95% CI, $−874 to $950). At a willingness-to-pay of $50000 per QALY, the probability that Internet-based self-management was cost-effective compared to usual care was 62% and 82% from a societal and health care perspective, respectively. Conclusions: Internet-based self-management of asthma can be as effective as current asthma care and costs are similar. Trial Registration: Current Controlled Trials ISRCTN79864465

Suggested Citation

  • Victor van der Meer & Wilbert B van den Hout & Moira J Bakker & Klaus F Rabe & Peter J Sterk & Willem J J Assendelft & Job Kievit & Jacob K Sont & on behalf of the SMASHING (Self-Management in Asthma , 2011. "Cost-Effectiveness of Internet-Based Self-Management Compared with Usual Care in Asthma," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-8, November.
  • Handle: RePEc:plo:pone00:0027108
    DOI: 10.1371/journal.pone.0027108
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027108
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0027108&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0027108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ghosh, C. S. & Ravindran, P. & Joshi, M. & Stearns, Sally C., 1998. "Reductions in hospital use from self management training for chronic asthmatics," Social Science & Medicine, Elsevier, vol. 46(8), pages 1087-1093, April.
    2. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits," Medical Decision Making, , vol. 18(2_suppl), pages 68-80, April.
    3. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits: A New Framework for the Analysis of Uncertainty in Cost-Effectiveness Analysis," NBER Technical Working Papers 0227, National Bureau of Economic Research, Inc.
    4. Andrew Briggs & Taane Clark & Jane Wolstenholme & Philip Clarke, 2003. "Missing.... presumed at random: cost‐analysis of incomplete data," Health Economics, John Wiley & Sons, Ltd., vol. 12(5), pages 377-392, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basu, Anirban & Jena, Anupam B. & Philipson, Tomas J., 2011. "The impact of comparative effectiveness research on health and health care spending," Journal of Health Economics, Elsevier, vol. 30(4), pages 695-706, July.
    2. Simon Eckermann & Tim Coelli, 2008. "Including quality attributes in a model of health care efficiency: A net benefit approach," CEPA Working Papers Series WP032008, School of Economics, University of Queensland, Australia.
    3. Clarke, Philip M. & Hayes, Alison J., 2009. "Measuring achievement: Changes in risk factors for cardiovascular disease in Australia," Social Science & Medicine, Elsevier, vol. 68(3), pages 552-561, February.
    4. Niklas Zethraeus & Magnus Johannesson & Bengt Jönsson & Mickael Löthgren & Magnus Tambour, 2003. "Advantages of Using the Net-Benefit Approach for Analysing Uncertainty in Economic Evaluation Studies," PharmacoEconomics, Springer, vol. 21(1), pages 39-48, January.
    5. Jordan Amdahl & Jose Diaz & Arati Sharma & Jinhee Park & David Chandiwana & Thomas E Delea, 2017. "Cost-effectiveness of pazopanib versus sunitinib for metastatic renal cell carcinoma in the United Kingdom," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
    6. Emma McIntosh, 2006. "Using Discrete Choice Experiments within a Cost-Benefit Analysis Framework," PharmacoEconomics, Springer, vol. 24(9), pages 855-868, September.
    7. Martin Henriksson & Fredrik Lundgren & Per Carlsson, 2006. "Informing the efficient use of health care and health care research resources ‐ the case of screening for abdominal aortic aneurysm in Sweden," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1311-1322, December.
    8. David Brain & Ruth Tulleners & Xing Lee & Qinglu Cheng & Nicholas Graves & Rosana Pacella, 2019. "Cost-effectiveness analysis of an innovative model of care for chronic wounds patients," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    9. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    10. Andrew H. Briggs & Bernie J. O'Brien, 2001. "The death of cost‐minimization analysis?," Health Economics, John Wiley & Sons, Ltd., vol. 10(2), pages 179-184, March.
    11. Richard M. Nixon & David Wonderling & Richard D. Grieve, 2010. "Non‐parametric methods for cost‐effectiveness analysis: the central limit theorem and the bootstrap compared," Health Economics, John Wiley & Sons, Ltd., vol. 19(3), pages 316-333, March.
    12. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    13. John Mullahy, 2017. "Individual Results May Vary: Elementary Analytics of Inequality-Probability Bounds, with Applications to Health-Outcome Treatment Effects," NBER Working Papers 23603, National Bureau of Economic Research, Inc.
    14. Andrew Briggs, 2012. "Statistical Methods for Cost-effectiveness Analysis Alongside Clinical Trials," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 50, Edward Elgar Publishing.
    15. Bas Groot Koerkamp & M. G. Myriam Hunink & Theo Stijnen & Milton C. Weinstein, 2006. "Identifying key parameters in cost‐effectiveness analysis using value of information: a comparison of methods," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 383-392, April.
    16. Quang Dang Nguyen & Mikhail Prokopenko, 2022. "A general framework for optimising cost-effectiveness of pandemic response under partial intervention measures," Papers 2205.08996, arXiv.org, revised Nov 2022.
    17. Mullahy, John, 2018. "Individual results may vary: Inequality-probability bounds for some health-outcome treatment effects," Journal of Health Economics, Elsevier, vol. 61(C), pages 151-162.
    18. Pauline Chauvin & Jean-Michel Josselin & Denis Heresbach, 2012. "Incremental net benefit and acceptability of alternative health policies: a case study of mass screening for colorectal cancer," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 13(3), pages 237-250, June.
    19. Elamin H. Elbasha, 2005. "Risk aversion and uncertainty in cost‐effectiveness analysis: the expected‐utility, moment‐generating function approach," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 457-470, May.
    20. Daniel Howdon & James Lomas, 2017. "Pricing implications of non-marginal budgetary impacts in health technology assessment: a conceptual model," Working Papers 148cherp, Centre for Health Economics, University of York.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0027108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.