IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0018389.html
   My bibliography  Save this article

North African Influences and Potential Bias in Case-Control Association Studies in the Spanish Population

Author

Listed:
  • María Pino-Yanes
  • Almudena Corrales
  • Santiago Basaldúa
  • Alexis Hernández
  • Luisa Guerra
  • Jesús Villar
  • Carlos Flores

Abstract

Background: Despite the limited genetic heterogeneity of Spanish populations, substantial evidences support that historical African influences have not affected them uniformly. Accounting for such population differences might be essential to reduce spurious results in association studies of genetic factors with disease. Using ancestry informative markers (AIMs), we aimed to measure the African influences in Spanish populations and to explore whether these might introduce statistical bias in population-based association studies. Methodology/Principal Findings: We genotyped 93 AIMs in Spanish (from the Canary Islands and the Iberian Peninsula) and Northwest Africans, and conducted population and individual-based clustering analyses along with reference data from the HapMap, HGDP-CEPH, and other sources. We found significant differences for the Northwest African influence among Spanish populations from as low as ≈5% in Spanish from the Iberian Peninsula to as much as ≈17% in Canary Islanders, whereas the sub-Saharan African influence was negligible. Strikingly, the Northwest African ancestry showed a wide inter-individual variation in Canary Islanders ranging from 0% to 96%, reflecting the violent way the Islands were conquered and colonized by the Spanish in the XV century. As a consequence, a comparison of allele frequencies between Spanish samples from the Iberian Peninsula and the Canary Islands evidenced an excess of markers with significant differences. However, the inflation of p-values for the differences was adequately controlled by correcting for genetic ancestry estimates derived from a reduced number of AIMs. Conclusions/Significance: Although the African influences estimated might be biased due to marker ascertainment, these results confirm that Northwest African genetic footprints are recognizable nowadays in the Spanish populations, particularly in Canary Islanders, and that the uneven African influences existing in these populations might increase the risk for false positives in association studies. Adjusting for population stratification assessed with a few dozen AIMs would be sufficient to control this effect.

Suggested Citation

  • María Pino-Yanes & Almudena Corrales & Santiago Basaldúa & Alexis Hernández & Luisa Guerra & Jesús Villar & Carlos Flores, 2011. "North African Influences and Potential Bias in Case-Control Association Studies in the Spanish Population," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-8, March.
  • Handle: RePEc:plo:pone00:0018389
    DOI: 10.1371/journal.pone.0018389
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018389
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0018389&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0018389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Alberto Henríquez-Hernández & Almudena Valenciano & Palmira Foro-Arnalot & María Jesús Álvarez-Cubero & José Manuel Cozar & José Francisco Suárez-Novo & Manel Castells-Esteve & Adriana Ayala-Gil , 2013. "Polymorphisms in DNA-Repair Genes in a Cohort of Prostate Cancer Patients from Different Areas in Spain: Heterogeneity between Populations as a Confounding Factor in Association Studies," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-9, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gyaneshwer Chaubey & Anurag Kadian & Saroj Bala & Vadlamudi Raghavendra Rao, 2015. "Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
    2. Daniel Svensson & Matilda Rentoft & Anna M Dahlin & Emma Lundholm & Pall I Olason & Andreas Sjödin & Carin Nylander & Beatrice S Melin & Johan Trygg & Erik Johansson, 2020. "A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    3. Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
    4. Felsenstein, Joseph, 2015. "Covariation of gene frequencies in a stepping-stone lattice of populations," Theoretical Population Biology, Elsevier, vol. 100(C), pages 88-97.
    5. Yaron Granot & Omri Tal & Saharon Rosset & Karl Skorecki, 2016. "On the Apportionment of Population Structure," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-24, August.
    6. Pradeep Tiwari & Rintu Kutum & Tavpritesh Sethi & Ankita Shrivastava & Bhushan Girase & Shilpi Aggarwal & Rutuja Patil & Dhiraj Agarwal & Pramod Gautam & Anurag Agrawal & Debasis Dash & Saurabh Ghosh , 2017. "Recapitulation of Ayurveda constitution types by machine learning of phenotypic traits," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-17, October.
    7. Özkan İş & Xue Wang & Joseph S. Reddy & Yuhao Min & Elanur Yilmaz & Prabesh Bhattarai & Tulsi Patel & Jeremiah Bergman & Zachary Quicksall & Michael G. Heckman & Frederick Q. Tutor-New & Birsen Can De, 2024. "Gliovascular transcriptional perturbations in Alzheimer’s disease reveal molecular mechanisms of blood brain barrier dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Hyosik Jang & Ian M Ehrenreich, 2012. "Genome-Wide Characterization of Genetic Variation in the Unicellular, Green Alga Chlamydomonas reinhardtii," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    9. Mathieu Gautier & Denis Laloë & Katayoun Moazami-Goudarzi, 2010. "Insights into the Genetic History of French Cattle from Dense SNP Data on 47 Worldwide Breeds," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-11, September.
    10. Xiaofeng Cai & Xuepeng Sun & Chenxi Xu & Honghe Sun & Xiaoli Wang & Chenhui Ge & Zhonghua Zhang & Quanxi Wang & Zhangjun Fei & Chen Jiao & Quanhua Wang, 2021. "Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    11. Vania Bonifaz-Peña & Alejandra V Contreras & Claudio Jose Struchiner & Rosimeire A Roela & Tatiane K Furuya-Mazzotti & Roger Chammas & Claudia Rangel-Escareño & Laura Uribe-Figueroa & María José Gómez, 2014. "Exploring the Distribution of Genetic Markers of Pharmacogenomics Relevance in Brazilian and Mexican Populations," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-22, November.
    12. Lee, Anthony J. & Hibbs, Courtney & Wright, Margaret J. & Martin, Nicholas G. & Keller, Matthew C. & Zietsch, Brendan P., 2017. "Assessing the accuracy of perceptions of intelligence based on heritable facial features," Intelligence, Elsevier, vol. 64(C), pages 1-8.
    13. Thompson Katherine L. & Linnen Catherine R. & Kubatko Laura, 2016. "Tree-based quantitative trait mapping in the presence of external covariates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(6), pages 473-490, December.
    14. Matthieu Bouaziz & Caroline Paccard & Mickael Guedj & Christophe Ambroise, 2012. "SHIPS: Spectral Hierarchical Clustering for the Inference of Population Structure in Genetic Studies," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-17, October.
    15. Jacobo Pardo-Seco & Alberto Gómez-Carballa & Jorge Amigo & Federico Martinón-Torres & Antonio Salas, 2014. "A Genome-Wide Study of Modern-Day Tuscans: Revisiting Herodotus's Theory on the Origin of the Etruscans," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    16. Andrey V Khrunin & Denis V Khokhrin & Irina N Filippova & Tõnu Esko & Mari Nelis & Natalia A Bebyakova & Natalia L Bolotova & Janis Klovins & Liene Nikitina-Zake & Karola Rehnström & Samuli Ripatti & , 2013. "A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    17. Ilja M Nolte & Chris Wallace & Stephen J Newhouse & Daryl Waggott & Jingyuan Fu & Nicole Soranzo & Rhian Gwilliam & Panos Deloukas & Irina Savelieva & Dongling Zheng & Chrysoula Dalageorgou & Martin F, 2009. "Common Genetic Variation Near the Phospholamban Gene Is Associated with Cardiac Repolarisation: Meta-Analysis of Three Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-10, July.
    18. Hoicheong Siu & Li Jin & Momiao Xiong, 2012. "Manifold Learning for Human Population Structure Studies," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-18, January.
    19. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    20. Andre Krumel Portella & Afroditi Papantoni & Catherine Paquet & Spencer Moore & Keri Shiels Rosch & Stewart Mostofsky & Richard S Lee & Kimberly R Smith & Robert Levitan & Patricia Pelufo Silveira & S, 2020. "Predicted DRD4 prefrontal gene expression moderates snack intake and stress perception in response to the environment in adolescents," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0018389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.