IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0018155.html
   My bibliography  Save this article

Estimating Parameters of Speciation Models Based on Refined Summaries of the Joint Site-Frequency Spectrum

Author

Listed:
  • Aurélien Tellier
  • Peter Pfaffelhuber
  • Bernhard Haubold
  • Lisha Naduvilezhath
  • Laura E Rose
  • Thomas Städler
  • Wolfgang Stephan
  • Dirk Metzler

Abstract

Understanding the processes and conditions under which populations diverge to give rise to distinct species is a central question in evolutionary biology. Since recently diverged populations have high levels of shared polymorphisms, it is challenging to distinguish between recent divergence with no (or very low) inter-population gene flow and older splitting events with subsequent gene flow. Recently published methods to infer speciation parameters under the isolation-migration framework are based on summarizing polymorphism data at multiple loci in two species using the joint site-frequency spectrum (JSFS). We have developed two improvements of these methods based on a more extensive use of the JSFS classes of polymorphisms for species with high intra-locus recombination rates. First, using a likelihood based method, we demonstrate that taking into account low-frequency polymorphisms shared between species significantly improves the joint estimation of the divergence time and gene flow between species. Second, we introduce a local linear regression algorithm that considerably reduces the computational time and allows for the estimation of unequal rates of gene flow between species. We also investigate which summary statistics from the JSFS allow the greatest estimation accuracy for divergence time and migration rates for low (around 10) and high (around 100) numbers of loci. Focusing on cases with low numbers of loci and high intra-locus recombination rates we show that our methods for the estimation of divergence time and migration rates are more precise than existing approaches.

Suggested Citation

  • Aurélien Tellier & Peter Pfaffelhuber & Bernhard Haubold & Lisha Naduvilezhath & Laura E Rose & Thomas Städler & Wolfgang Stephan & Dirk Metzler, 2011. "Estimating Parameters of Speciation Models Based on Refined Summaries of the Joint Site-Frequency Spectrum," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-13, May.
  • Handle: RePEc:plo:pone00:0018155
    DOI: 10.1371/journal.pone.0018155
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018155
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0018155&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0018155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0018155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.