IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0012884.html
   My bibliography  Save this article

Influence of the Time Scale on the Construction of Financial Networks

Author

Listed:
  • Frank Emmert-Streib
  • Matthias Dehmer

Abstract

Background: In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. Methodology/Principal Findings: For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Conclusions/Significance: Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.

Suggested Citation

  • Frank Emmert-Streib & Matthias Dehmer, 2010. "Influence of the Time Scale on the Construction of Financial Networks," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.
  • Handle: RePEc:plo:pone00:0012884
    DOI: 10.1371/journal.pone.0012884
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012884
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0012884&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0012884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    2. Kwapień, J & Drożdż, S & Speth, J, 2004. "Time scales involved in emergent market coherence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 231-242.
    3. Drożdż, S & Grümmer, F & Górski, A.Z & Ruf, F & Speth, J, 2000. "Dynamics of competition between collectivity and noise in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 440-449.
    4. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    5. Boginski, Vladimir & Butenko, Sergiy & Pardalos, Panos M., 2005. "Statistical analysis of financial networks," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 431-443, February.
    6. L. Kullmann & J. Kertesz & K. Kaski, 2002. "Time dependent cross correlations between different stock returns: A directed network of influence," Papers cond-mat/0203256, arXiv.org, revised May 2002.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chorozoglou, D. & Papadimitriou, E. & Kugiumtzis, D., 2019. "Investigating small-world and scale-free structure of earthquake networks in Greece," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 143-152.
    2. Chorozoglou, D. & Kugiumtzis, D. & Papadimitriou, E., 2018. "Testing the structure of earthquake networks from multivariate time series of successive main shocks in Greece," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 28-39.
    3. Frank Emmert-Streib, 2013. "Structural Properties and Complexity of a New Network Class: Collatz Step Graphs," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-14, February.
    4. Zhong, Tao & Peng, Qinke & Wang, Xiao & Zhang, Jing, 2016. "Novel indexes based on network structure to indicate financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 583-594.
    5. Binghui Wu & Tingting Duan, 2019. "Nonlinear Dynamics Characteristic of Risk Contagion in Financial Market Based on Agent Modeling and Complex Network," Complexity, Hindawi, vol. 2019, pages 1-12, June.
    6. Dieter Hendricks & Tim Gebbie & Diane Wilcox, 2015. "Detecting intraday financial market states using temporal clustering," Papers 1508.04900, arXiv.org, revised Feb 2017.
    7. Sindhuja Ranganathan & Mikko Kivelä & Juho Kanniainen, 2018. "Dynamics of investor spanning trees around dot-com bubble," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-14, June.
    8. Stephan Bialonski & Martin Wendler & Klaus Lehnertz, 2011. "Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-13, August.
    9. Dion Harmon & Marco Lagi & Marcus A M de Aguiar & David D Chinellato & Dan Braha & Irving R Epstein & Yaneer Bar-Yam, 2015. "Anticipating Economic Market Crises Using Measures of Collective Panic," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
    10. Frank Emmert-Streib & Aliyu Musa & Kestutis Baltakys & Juho Kanniainen & Shailesh Tripathi & Olli Yli-Harja & Herbert Jodlbauer & Matthias Dehmer, 2017. "Computational Analysis of the structural properties of Economic and Financial Networks," Papers 1710.04455, arXiv.org.
    11. Kk{e}stutis Baltakys & Juho Kanniainen & Frank Emmert-Streib, 2017. "Multilayer Aggregation with Statistical Validation: Application to Investor Networks," Papers 1708.09850, arXiv.org, revised May 2018.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    2. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    3. Tristan Millington & Mahesan Niranjan, 2020. "Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation," Papers 2005.03963, arXiv.org, revised Nov 2020.
    4. Millington, Tristan & Niranjan, Mahesan, 2021. "Stability and similarity in financial networks—How do they change in times of turbulence?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    5. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.
    6. Justo Puerto & Moises Rodr'iguez-Madrena & Andrea Scozzari, 2019. "Location and portfolio selection problems: A unified framework," Papers 1907.07101, arXiv.org.
    7. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    8. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    9. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    10. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    11. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    12. Bommarito, Michael J. & Duran, Ahmet, 2018. "Spectral analysis of time-dependent market-adjusted return correlation matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 273-282.
    13. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    14. Nie, Chun-Xiao, 2022. "Analysis of critical events in the correlation dynamics of cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    15. Xu, Shiyun & Shao, Menglin & Qiao, Wenxuan & Shang, Pengjian, 2018. "Generalized AIC method based on higher-order moments and entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1127-1138.
    16. Gorban, Alexander N. & Smirnova, Elena V. & Tyukina, Tatiana A., 2010. "Correlations, risk and crisis: From physiology to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3193-3217.
    17. Bilal Ahmed Memon & Rabia Tahir, 2021. "Examining Network Structures and Dynamics of World Energy Companies in Stock Markets: A Complex Network Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 329-344.
    18. Ren, Yinghua & Zhao, Wanru & You, Wanhai & Zhu, Huiming, 2022. "Multiscale features of extreme risk spillover networks among global stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    19. Guo, Xue & Li, Weibo & Zhang, Hu & Tian, Tianhai, 2022. "Multi-likelihood methods for developing relationship networks using stock market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    20. Zhu, Jia & Wei, Daijun, 2021. "Analysis of stock market based on visibility graph and structure entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 576(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0012884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.