IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0005998.html
   My bibliography  Save this article

Motor Learning Characterized by Changing Lévy Distributions

Author

Listed:
  • Tyler Cluff
  • Ramesh Balasubramaniam

Abstract

The probability distributions for changes in transverse plane fingertip speed are Lévy distributed in human pole balancing. Six subjects learned to balance a pole on their index finger over three sessions while sitting and standing. The Lévy or decay exponent decreased as a function of learning, showing reduced decay in the probability for large speed steps and was significantly smaller in the sitting condition. However, the probability distribution for changes in fingertip speed was truncated so that the probability for large steps was reduced in this condition. These results show a learning-induced tolerance for large speed step sizes and demonstrate that motor learning in continuous tasks may be characterized by changing distributions that reflect sensorimotor skill acquisition.

Suggested Citation

  • Tyler Cluff & Ramesh Balasubramaniam, 2009. "Motor Learning Characterized by Changing Lévy Distributions," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-7, June.
  • Handle: RePEc:plo:pone00:0005998
    DOI: 10.1371/journal.pone.0005998
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005998
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0005998&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0005998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:plo:pone00:0007427 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    2. Loreen Hertäg & Katharina A. Wilmes & Claudia Clopath, 2025. "Uncertainty estimation with prediction-error circuits," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    5. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    7. Jennifer Laura Lee & Wei Ji Ma, 2021. "Point-estimating observer models for latent cause detection," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-29, October.
    8. Alkis M Hadjiosif & J Ryan Morehead & Maurice A Smith, 2023. "A double dissociation between savings and long-term memory in motor learning," PLOS Biology, Public Library of Science, vol. 21(4), pages 1-32, April.
    9. Vassilios N Christopoulos & Paul R Schrater, 2009. "Grasping Objects with Environmentally Induced Position Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-11, October.
    10. Christopher L Hewitson & David M Kaplan & Matthew J Crossley, 2023. "Error-independent effect of sensory uncertainty on motor learning when both feedforward and feedback control processes are engaged," PLOS Computational Biology, Public Library of Science, vol. 19(9), pages 1-45, September.
    11. Guido Marco Cicchini & Giovanni D’Errico & David Charles Burr, 2022. "Crowding results from optimal integration of visual targets with contextual information," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Alice Soldà & Changxia Ke & Lionel Page & William von Hippel, 2020. "Strategically delusional," Experimental Economics, Springer;Economic Science Association, vol. 23(3), pages 604-631, September.
    13. Daniel Bjasch & Christopher J Bockisch & Dominik Straumann & Alexander A Tarnutzer, 2012. "Differential Effects of Visual Feedback on Subjective Visual Vertical Accuracy and Precision," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    14. Philipp Schustek & Rubén Moreno-Bote, 2018. "Instance-based generalization for human judgments about uncertainty," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-27, June.
    15. Lukas K. Amann & Virginia Casasnovas & Alexander Gail, 2025. "Visual target and task-critical feedback uncertainty impair different stages of reach planning in motor cortex," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    16. Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
    17. Joshua G A Cashaback & Christopher K Lao & Dimitrios J Palidis & Susan K Coltman & Heather R McGregor & Paul L Gribble, 2019. "The gradient of the reinforcement landscape influences sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-27, March.
    18. Michael Bergin & Kylie Tucker & Bill Vicenzino & Paul W Hodges, 2021. "“Taking action” to reduce pain—Has interpretation of the motor adaptation to pain been too simplistic?," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-19, December.
    19. Nils Neupärtl & Fabian Tatai & Constantin A Rothkopf, 2020. "Intuitive physical reasoning about objects’ masses transfers to a visuomotor decision task consistent with Newtonian physics," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-26, October.
    20. Tianhe Wang & Yingrui Luo & Richard B Ivry & Jonathan S Tsay & Ernst Pöppel & Yan Bao, 2023. "A unitary mechanism underlies adaptation to both local and global environmental statistics in time perception," PLOS Computational Biology, Public Library of Science, vol. 19(5), pages 1-23, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0005998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.