IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0004909.html
   My bibliography  Save this article

The Spatial and Temporal Construction of Confidence in the Visual Scene

Author

Listed:
  • Martin Graziano
  • Mariano Sigman

Abstract

Human subjects can report many items of a cluttered field a few hundred milliseconds after stimulus presentation. This memory decays rapidly and after a second only 3 or 4 items can be stored in working memory. Here we compared the dynamics of objective performance with a measure of subjective report and we observed that 1) Objective performance beyond explicit subjective reports (blindsight) was significantly more pronounced within a short temporal interval and within specific locations of the visual field which were robust across sessions 2) High confidence errors (false beliefs) were largely confined to a small spatial window neighboring the cue. The size of this window did not change in time 3) Subjective confidence showed a moderate but consistent decrease with time, independent of all other experimental factors. Our study allowed us to asses quantitatively the temporal and spatial access to an objective response and to subjective reports.

Suggested Citation

  • Martin Graziano & Mariano Sigman, 2009. "The Spatial and Temporal Construction of Confidence in the Visual Scene," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-10, March.
  • Handle: RePEc:plo:pone00:0004909
    DOI: 10.1371/journal.pone.0004909
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004909
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0004909&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0004909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefano Baldassi & Nicola Megna & David C Burr, 2006. "Visual Clutter Causes High-Magnitude Errors," PLOS Biology, Public Library of Science, vol. 4(3), pages 1-1, February.
    2. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Deng & Yanyu Zhao & Yebin Liu & Qionghai Dai, 2013. "Differences Help Recognition: A Probabilistic Interpretation," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-10, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    2. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    3. Loreen Hertäg & Katharina A. Wilmes & Claudia Clopath, 2025. "Uncertainty estimation with prediction-error circuits," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    4. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    6. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    8. Jennifer Laura Lee & Wei Ji Ma, 2021. "Point-estimating observer models for latent cause detection," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-29, October.
    9. Alkis M Hadjiosif & J Ryan Morehead & Maurice A Smith, 2023. "A double dissociation between savings and long-term memory in motor learning," PLOS Biology, Public Library of Science, vol. 21(4), pages 1-32, April.
    10. Vassilios N Christopoulos & Paul R Schrater, 2009. "Grasping Objects with Environmentally Induced Position Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-11, October.
    11. Christopher L Hewitson & David M Kaplan & Matthew J Crossley, 2023. "Error-independent effect of sensory uncertainty on motor learning when both feedforward and feedback control processes are engaged," PLOS Computational Biology, Public Library of Science, vol. 19(9), pages 1-45, September.
    12. Guido Marco Cicchini & Giovanni D’Errico & David Charles Burr, 2022. "Crowding results from optimal integration of visual targets with contextual information," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Alice Soldà & Changxia Ke & Lionel Page & William von Hippel, 2020. "Strategically delusional," Experimental Economics, Springer;Economic Science Association, vol. 23(3), pages 604-631, September.
    14. Daniel Bjasch & Christopher J Bockisch & Dominik Straumann & Alexander A Tarnutzer, 2012. "Differential Effects of Visual Feedback on Subjective Visual Vertical Accuracy and Precision," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    15. Philipp Schustek & Rubén Moreno-Bote, 2018. "Instance-based generalization for human judgments about uncertainty," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-27, June.
    16. Lukas K. Amann & Virginia Casasnovas & Alexander Gail, 2025. "Visual target and task-critical feedback uncertainty impair different stages of reach planning in motor cortex," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    17. Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
    18. Joshua G A Cashaback & Christopher K Lao & Dimitrios J Palidis & Susan K Coltman & Heather R McGregor & Paul L Gribble, 2019. "The gradient of the reinforcement landscape influences sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-27, March.
    19. Michael Bergin & Kylie Tucker & Bill Vicenzino & Paul W Hodges, 2021. "“Taking action” to reduce pain—Has interpretation of the motor adaptation to pain been too simplistic?," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-19, December.
    20. Nils Neupärtl & Fabian Tatai & Constantin A Rothkopf, 2020. "Intuitive physical reasoning about objects’ masses transfers to a visuomotor decision task consistent with Newtonian physics," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-26, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0004909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.