IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0002541.html
   My bibliography  Save this article

Visualizing Global Properties of Large Complex Networks

Author

Listed:
  • Weijiang Li
  • Hiroyuki Kurata

Abstract

For complex biological networks, graphical representations are highly desired for understanding some design principles, but few drawing methods are available that capture topological features of a large and highly heterogeneous network, such as a protein interaction network. Here we propose the circular perspective drawing (CPD) method to visualize global structures of large complex networks. The presented CPD combines the quasi-continuous search (QCS) analogous to the steepest descent method with a random node swapping strategy for an enhanced calculation speed. The CPD depicts a network in an aesthetic manner by showing connection patterns between different parts of the network instead of detailed links between nodes. Global structural features of networks exhibited by CPD provide clues toward a comprehensive understanding of the network organizations. Availability: Software is freely available at http://www.cadlive.jp

Suggested Citation

  • Weijiang Li & Hiroyuki Kurata, 2008. "Visualizing Global Properties of Large Complex Networks," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-4, July.
  • Handle: RePEc:plo:pone00:0002541
    DOI: 10.1371/journal.pone.0002541
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002541
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0002541&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0002541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Jing-Dong J. Han & Nicolas Bertin & Tong Hao & Debra S. Goldberg & Gabriel F. Berriz & Lan V. Zhang & Denis Dupuy & Albertha J. M. Walhout & Michael E. Cusick & Frederick P. Roth & Marc Vidal, 2004. "Erratum: Evidence for dynamically organized modularity in the yeast protein–protein interaction network," Nature, Nature, vol. 430(6997), pages 380-380, July.
    3. Jing-Dong J. Han & Nicolas Bertin & Tong Hao & Debra S. Goldberg & Gabriel F. Berriz & Lan V. Zhang & Denis Dupuy & Albertha J. M. Walhout & Michael E. Cusick & Frederick P. Roth & Marc Vidal, 2004. "Evidence for dynamically organized modularity in the yeast protein–protein interaction network," Nature, Nature, vol. 430(6995), pages 88-93, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franke, R., 2016. "CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 384-408.
    2. Pan-Jun Kim & Nathan D Price, 2011. "Genetic Co-Occurrence Network across Sequenced Microbes," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-9, December.
    3. Patrick C F Buchholz & Catharina Zeil & Jürgen Pleiss, 2018. "The scale-free nature of protein sequence space," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-14, August.
    4. Seyed Yahya Anvar & Allan Tucker & Veronica Vinciotti & Andrea Venema & Gert-Jan B van Ommen & Silvere M van der Maarel & Vered Raz & Peter A C ‘t Hoen, 2011. "Interspecies Translation of Disease Networks Increases Robustness and Predictive Accuracy," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-14, November.
    5. Hou, Bonan & Yao, Yiping & Liao, Dongsheng, 2012. "Identifying all-around nodes for spreading dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4012-4017.
    6. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    7. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2021. "Understanding the roles of rail stations: Insights from network approaches in the London metropolitan area," Journal of Transport Geography, Elsevier, vol. 94(C).
    8. Fabio Cumbo & Paola Paci & Daniele Santoni & Luisa Di Paola & Alessandro Giuliani, 2014. "GIANT: A Cytoscape Plugin for Modular Networks," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    9. Yau-Hua Yu & Hsu-Ko Kuo & Kuo-Wei Chang, 2008. "The Evolving Transcriptome of Head and Neck Squamous Cell Carcinoma: A Systematic Review," PLOS ONE, Public Library of Science, vol. 3(9), pages 1-11, September.
    10. Changki Hong & Jeewon Hwang & Kwang-Hyun Cho & Insik Shin, 2015. "An Efficient Steady-State Analysis Method for Large Boolean Networks with High Maximum Node Connectivity," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-19, December.
    11. Seah Choon Sen & Shahreen Kasim & Mohd Farhan Md Fudzee & Rusli Abdullah & Rodziah Atan, 2017. "Random Walk From Different Perspective," Acta Electronica Malaysia (AEM), Zibeline International Publishing, vol. 1(2), pages 26-27, November.
    12. Chrysafis Vogiatzis & Mustafa Can Camur, 2019. "Identification of Essential Proteins Using Induced Stars in Protein–Protein Interaction Networks," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 703-718, October.
    13. Gabor I Simko & Peter Csermely, 2013. "Nodes Having a Major Influence to Break Cooperation Define a Novel Centrality Measure: Game Centrality," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    14. Shiwei Lu & Yaping Huang & Zhiyuan Zhao & Xiping Yang, 2018. "Exploring the Hierarchical Structure of China’s Railway Network from 2008 to 2017," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    15. Luis P Fernandes & Alessia Annibale & Jens Kleinjung & Anthony C C Coolen & Franca Fraternali, 2010. "Protein Networks Reveal Detection Bias and Species Consistency When Analysed by Information-Theoretic Methods," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-14, August.
    16. Sun, Yeran & Mburu, Lucy & Wang, Shaohua, 2016. "Analysis of community properties and node properties to understand the structure of the bus transport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 523-530.
    17. Amir Lakizadeh & Saeed Jalili, 2016. "BiCAMWI: A Genetic-Based Biclustering Algorithm for Detecting Dynamic Protein Complexes," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.
    18. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    19. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    20. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0002541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.