Author
Listed:
- Maria del Carmen Soto-Camacho
(Sección de Estudios de Posgrado e Investigación, Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas, Instituto Politécnico Nacional, Mexico City 08400, Mexico)
- Jazmin Susana De la Cruz-Garcia
(Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica (Zacatenco), Instituto Politécnico Nacional, Mexico City 07338, Mexico)
- Juan Bory-Reyes
(Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica (Zacatenco), Instituto Politécnico Nacional, Mexico City 07338, Mexico)
- Aldo Ramirez-Arellano
(Sección de Estudios de Posgrado e Investigación, Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas, Instituto Politécnico Nacional, Mexico City 08400, Mexico)
Abstract
A novel definition of volume dimension for a mass function based on a sigmoid asymptote is proposed; in particular, we extend the volume dimension of a mass function to define the volume dimensions for nodes and edges in complex networks. Furthermore, the relationship between the proposed volume dimension and the non-specificity term of the Deng entropy is shown, and the traditional volume dimension and volume dimension based on the node degree in complex networks are revisited. Our experiments show that in both real and synthetic complex networks, the volume dimension tends to follow a sigmoidal asymptote rather than the previously utilized power law asymptote.
Suggested Citation
Maria del Carmen Soto-Camacho & Jazmin Susana De la Cruz-Garcia & Juan Bory-Reyes & Aldo Ramirez-Arellano, 2025.
"Volume Dimension of Mass Functions in Complex Networks,"
Mathematics, MDPI, vol. 13(17), pages 1-29, August.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:17:p:2775-:d:1736658
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:17:p:2775-:d:1736658. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.