IDEAS home Printed from https://ideas.repec.org/a/plo/pgph00/0001556.html
   My bibliography  Save this article

Assessing racial bias in type 2 diabetes risk prediction algorithms

Author

Listed:
  • Héléne T Cronjé
  • Alexandros Katsiferis
  • Leonie K Elsenburg
  • Thea O Andersen
  • Naja H Rod
  • Tri-Long Nguyen
  • Tibor V Varga

Abstract

Risk prediction models for type 2 diabetes can be useful for the early detection of individuals at high risk. However, models may also bias clinical decision-making processes, for instance by differential risk miscalibration across racial groups. We investigated whether the Prediabetes Risk Test (PRT) issued by the National Diabetes Prevention Program, and two prognostic models, the Framingham Offspring Risk Score, and the ARIC Model, demonstrate racial bias between non-Hispanic Whites and non-Hispanic Blacks. We used National Health and Nutrition Examination Survey (NHANES) data, sampled in six independent two-year batches between 1999 and 2010. A total of 9,987 adults without a prior diagnosis of diabetes and with fasting blood samples available were included. We calculated race- and year-specific average predicted risks of type 2 diabetes according to the risk models. We compared the predicted risks with observed ones extracted from the US Diabetes Surveillance System across racial groups (summary calibration). All investigated models were found to be miscalibrated with regard to race, consistently across the survey years. The Framingham Offspring Risk Score overestimated type 2 diabetes risk for non-Hispanic Whites and underestimated risk for non-Hispanic Blacks. The PRT and the ARIC models overestimated risk for both races, but more so for non-Hispanic Whites. These landmark models overestimated the risk of type 2 diabetes for non-Hispanic Whites more severely than for non-Hispanic Blacks. This may result in a larger proportion of non-Hispanic Whites being prioritized for preventive interventions, but it also increases the risk of overdiagnosis and overtreatment in this group. On the other hand, a larger proportion of non-Hispanic Blacks may be potentially underprioritized and undertreated.

Suggested Citation

  • Héléne T Cronjé & Alexandros Katsiferis & Leonie K Elsenburg & Thea O Andersen & Naja H Rod & Tri-Long Nguyen & Tibor V Varga, 2023. "Assessing racial bias in type 2 diabetes risk prediction algorithms," PLOS Global Public Health, Public Library of Science, vol. 3(5), pages 1-15, May.
  • Handle: RePEc:plo:pgph00:0001556
    DOI: 10.1371/journal.pgph.0001556
    as

    Download full text from publisher

    File URL: https://journals.plos.org/globalpublichealth/article?id=10.1371/journal.pgph.0001556
    Download Restriction: no

    File URL: https://journals.plos.org/globalpublichealth/article/file?id=10.1371/journal.pgph.0001556&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgph.0001556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Jae Kwang Kim & J. Michael Brick & Wayne A. Fuller & Graham Kalton, 2006. "On the bias of the multiple‐imputation variance estimator in survey sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 509-521, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    2. Rashid, S. & Mitra, R. & Steele, R.J., 2015. "Using mixtures of t densities to make inferences in the presence of missing data with a small number of multiply imputed data sets," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 84-96.
    3. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    4. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    5. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    6. Lin Lin & Rachel L Spreng & Kelly E Seaton & S Moses Dennison & Lindsay C Dahora & Daniel J Schuster & Sheetal Sawant & Peter B Gilbert & Youyi Fong & Neville Kisalu & Andrew J Pollard & Georgia D Tom, 2024. "GeM-LR: Discovering predictive biomarkers for small datasets in vaccine studies," PLOS Computational Biology, Public Library of Science, vol. 20(11), pages 1-23, November.
    7. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    8. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    9. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    10. Feldkircher, Martin, 2014. "The determinants of vulnerability to the global financial crisis 2008 to 2009: Credit growth and other sources of risk," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 19-49.
    11. repec:plo:pone00:0154450 is not listed on IDEAS
    12. Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.
    13. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    14. Georges Steffgen & Philipp E. Sischka & Martha Fernandez de Henestrosa, 2020. "The Quality of Work Index and the Quality of Employment Index: A Multidimensional Approach of Job Quality and Its Links to Well-Being at Work," IJERPH, MDPI, vol. 17(21), pages 1-31, October.
    15. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    16. Esef Hakan Toytok & Sungur Gürel, 2019. "Does Project Children’s University Increase Academic Self-Efficacy in 6th Graders? A Weak Experimental Design," Sustainability, MDPI, vol. 11(3), pages 1-12, February.
    17. J M van Niekerk & M C Vos & A Stein & L M A Braakman-Jansen & A F Voor in ‘t holt & J E W C van Gemert-Pijnen, 2020. "Risk factors for surgical site infections using a data-driven approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    18. Stefkovics, Ádám & Krekó, Péter & Koltai, Júlia, 2024. "When reality knocks on the door. The effect of conspiracy beliefs on COVID-19 vaccine acceptance and the moderating role of experience with the virus," Social Science & Medicine, Elsevier, vol. 356(C).
    19. Joost R. Ginkel, 2020. "Standardized Regression Coefficients and Newly Proposed Estimators for $${R}^{{2}}$$R2 in Multiply Imputed Data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 185-205, March.
    20. Lara Jehi & Xinge Ji & Alex Milinovich & Serpil Erzurum & Amy Merlino & Steve Gordon & James B Young & Michael W Kattan, 2020. "Development and validation of a model for individualized prediction of hospitalization risk in 4,536 patients with COVID-19," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-15, August.
    21. Rawan Omar & Sooyun Caroline Tavolacci & Lathan Liou & Dillan F Villavisanis & Yoav Y Broza & Hossam Haick, 2024. "Real-time prognostic biomarkers for predicting in-hospital mortality and cardiac complications in COVID-19 patients," PLOS Global Public Health, Public Library of Science, vol. 4(3), pages 1-17, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgph00:0001556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: globalpubhealth (email available below). General contact details of provider: https://journals.plos.org/globalpublichealth .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.