Author
Listed:
- Bayram Cevdet Akdeniz
- Oleksandr Frei
- Alexey Shadrin
- Dmitry Vetrov
- Dmitry Kropotov
- Eivind Hovig
- Ole A Andreassen
- Anders M Dale
Abstract
Genome-wide association studies (GWAS) implicate broad genomic loci containing clusters of highly correlated genetic variants. Finemapping techniques can select and prioritize variants within each GWAS locus which are more likely to have a functional influence on the trait. Here, we present a novel method, Finemap-MiXeR, for finemapping causal variants from GWAS summary statistics, controlling for correlation among variants due to linkage disequilibrium. Our method is based on a variational Bayesian approach and direct optimization of the Evidence Lower Bound (ELBO) of the likelihood function derived from the MiXeR model. After obtaining the analytical expression for ELBO’s gradient, we apply Adaptive Moment Estimation (ADAM) algorithm for optimization, allowing us to obtain the posterior causal probability of each variant. Using these posterior causal probabilities, we validated Finemap-MiXeR across a wide range of scenarios using both synthetic data, and real data on height from the UK Biobank. Comparison of Finemap-MiXeR with two existing methods, FINEMAP and SuSiE RSS, demonstrated similar or improved accuracy. Furthermore, our method is computationally efficient in several aspects. For example, unlike many other methods in the literature, its computational complexity does not increase with the number of true causal variants in a locus and it does not require any matrix inversion operation. The mathematical framework of Finemap-MiXeR is flexible and may also be applied to other problems including cross-trait and cross-ancestry finemapping.Author summary: Genome-Wide Association Studies report the effect size of each genomic variant as summary statistics. Due to the correlated structure of the genomic variants, it may not be straightforward to determine the actual causal genomic variants from these summary statistics. Finemapping studies aim to identify these causal SNPs using different approaches. Here, we presented a novel finemapping method, called Finemap-MiXeR, to determine the actual causal variants using summary statistics data and weighted linkage disequilibrium matrix as input. Our method is based on Variational Bayesian inference on MiXeR model and Evidence Lower Bound of the model is determined to obtain a tractable optimization function. Afterwards, we determined the first derivatives of this Evidence Lower Bound, and finally, Adaptive Moment Estimation is applied to perform optimization. Our method has been validated on synthetic and real data, and similar or better performance than the existing finemapping tools has been observed.
Suggested Citation
Bayram Cevdet Akdeniz & Oleksandr Frei & Alexey Shadrin & Dmitry Vetrov & Dmitry Kropotov & Eivind Hovig & Ole A Andreassen & Anders M Dale, 2024.
"Finemap-MiXeR: A variational Bayesian approach for genetic finemapping,"
PLOS Genetics, Public Library of Science, vol. 20(8), pages 1-21, August.
Handle:
RePEc:plo:pgen00:1011372
DOI: 10.1371/journal.pgen.1011372
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1011372. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.