IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1010299.html
   My bibliography  Save this article

Fine-mapping from summary data with the “Sum of Single Effects” model

Author

Listed:
  • Yuxin Zou
  • Peter Carbonetto
  • Gao Wang
  • Matthew Stephens

Abstract

In recent work, Wang et al introduced the “Sum of Single Effects” (SuSiE) model, and showed that it provides a simple and efficient approach to fine-mapping genetic variants from individual-level data. Here we present new methods for fitting the SuSiE model to summary data, for example to single-SNP z-scores from an association study and linkage disequilibrium (LD) values estimated from a suitable reference panel. To develop these new methods, we first describe a simple, generic strategy for extending any individual-level data method to deal with summary data. The key idea is to replace the usual regression likelihood with an analogous likelihood based on summary data. We show that existing fine-mapping methods such as FINEMAP and CAVIAR also (implicitly) use this strategy, but in different ways, and so this provides a common framework for understanding different methods for fine-mapping. We investigate other common practical issues in fine-mapping with summary data, including problems caused by inconsistencies between the z-scores and LD estimates, and we develop diagnostics to identify these inconsistencies. We also present a new refinement procedure that improves model fits in some data sets, and hence improves overall reliability of the SuSiE fine-mapping results. Detailed evaluations of fine-mapping methods in a range of simulated data sets show that SuSiE applied to summary data is competitive, in both speed and accuracy, with the best available fine-mapping methods for summary data.Author summary: The goal of fine-mapping is to identify the genetic variants that causally affect some trait of interest. Fine-mapping is challenging because the genetic variants can be highly correlated due to a phenomenon called linkage disequilibrium (LD). The most successful current approaches to fine-mapping frame the problem as a variable selection problem, and here we focus on one such approach based on the “Sum of Single Effects” (SuSiE) model. The main contribution of this paper is to extend SuSiE to work with summary data, which is often accessible when the full genotype and phenotype data are not. In the process of extending SuSiE, we developed a new mathematical framework that helps to explain existing fine-mapping methods for summary data, why they work well (or not), and under what circumstances. In simulations, we show that SuSiE applied to summary data is competitive with the best available fine-mapping methods for summary data. We also show how different factors such as accuracy of the LD estimates can affect the quality of the fine-mapping.

Suggested Citation

  • Yuxin Zou & Peter Carbonetto & Gao Wang & Matthew Stephens, 2022. "Fine-mapping from summary data with the “Sum of Single Effects” model," PLOS Genetics, Public Library of Science, vol. 18(7), pages 1-24, July.
  • Handle: RePEc:plo:pgen00:1010299
    DOI: 10.1371/journal.pgen.1010299
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010299
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1010299&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1010299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1010299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.