IDEAS home Printed from https://ideas.repec.org/a/plo/pdig00/0000068.html
   My bibliography  Save this article

Point-of-care motion capture and biomechanical assessment improve clinical utility of dynamic balance testing for lower extremity osteoarthritis

Author

Listed:
  • Ryan T Halvorson
  • Francine T Castillo
  • Fayyaz Ahamed
  • Karim Khattab
  • Aaron Scheffler
  • Robert P Matthew
  • Jeffrey Lotz
  • Thomas P Vail
  • Brian T Feeley
  • Jeannie F Bailey

Abstract

Musculoskeletal conditions impede patient biomechanical function. However, clinicians rely on subjective functional assessments with poor test characteristics for biomechanical outcomes because more advanced assessments are impractical in the ambulatory care setting. Using markerless motion capture (MMC) in clinic to record time-series joint position data, we implemented a spatiotemporal assessment of patient kinematics during lower extremity functional testing to evaluate whether kinematic models could identify disease states beyond conventional clinical scoring. 213 trials of the star excursion balance test (SEBT) were recorded by 36 subjects during routine ambulatory clinic visits using both MMC technology and conventional clinician scoring. Conventional clinical scoring failed to distinguish patients with symptomatic lower extremity osteoarthritis (OA) from healthy controls in each component of the assessment. However, principal component analysis of shape models generated from MMC recordings revealed significant differences in subject posture between the OA and control cohorts for six of the eight components. Additionally, time-series models of subject posture change over time revealed distinct movement patterns and reduced overall postural change in the OA cohort compared to the controls. Finally, a novel metric quantifying postural control was derived from subject specific kinematic models and was shown to distinguish OA (1.69), asymptomatic postoperative (1.27), and control (1.23) cohorts (p = 0.0025) and to correlate with patient-reported OA symptom severity (R = -0.72, p = 0.018). Time series motion data have superior discriminative validity and clinical utility than conventional functional assessments in the case of the SEBT. Novel spatiotemporal assessment approaches can enable routine in-clinic collection of objective patient-specific biomechanical data for clinical decision-making and monitoring recovery.Author summary: Osteoarthritis (OA) is a leading cause of disability in the United States. Despite the relevance of biomechanical function as a marker of disease severity and as a target for therapeutic interventions, clinical assessments of biomechanical function are significantly limited by clinician subjectivity and poor test characteristics while more advanced methods are not feasible due to the need for specialized equipment and trained personnel. Coupling a single markerless motion capture camera with statistical modeling of posture change, we developed a practical system to perform advanced biomechanical assessments of lower extremity function during routine clinic visits. To validate our system, OA patients and healthy controls were assessed performing a functional balance task by clinicians according to conventional scoring and separately by our motion capture system using kinematic posture modeling. Although clinical scoring failed to distinguish OA patients and healthy controls, our kinematic modeling and dimensionality reduction techniques identified significant differences in both subject posture and motion trajectories throughout the assessment. Furthermore, OA patients reporting more severe symptoms exhibited worse postural control. Our results imply that novel motion capture approaches can enable routine in-clinic collection of objective patient-specific biomechanical data for clinical decision-making and monitoring recovery.

Suggested Citation

  • Ryan T Halvorson & Francine T Castillo & Fayyaz Ahamed & Karim Khattab & Aaron Scheffler & Robert P Matthew & Jeffrey Lotz & Thomas P Vail & Brian T Feeley & Jeannie F Bailey, 2022. "Point-of-care motion capture and biomechanical assessment improve clinical utility of dynamic balance testing for lower extremity osteoarthritis," PLOS Digital Health, Public Library of Science, vol. 1(7), pages 1-17, July.
  • Handle: RePEc:plo:pdig00:0000068
    DOI: 10.1371/journal.pdig.0000068
    as

    Download full text from publisher

    File URL: https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000068
    Download Restriction: no

    File URL: https://journals.plos.org/digitalhealth/article/file?id=10.1371/journal.pdig.0000068&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pdig.0000068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Gower, 1975. "Generalized procrustes analysis," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 33-51, March.
    2. F. James Rohlf, 1999. "Shape Statistics: Procrustes Superimpositions and Tangent Spaces," Journal of Classification, Springer;The Classification Society, vol. 16(2), pages 197-223, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyners, Michael & Qannari, El Mostafa, 2001. "Relating principal component analysis on merged data sets to a regression approach," Technical Reports 2001,47, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    3. Barbara McGillivray & Gard B. Jenset & Khalid Salama & Donna Schut, 2022. "Investigating patterns of change, stability, and interaction among scientific disciplines using embeddings," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
    4. Wei Wang & Stephen J Lycett & Noreen von Cramon-Taubadel & Jennie J H Jin & Christopher J Bae, 2012. "Comparison of Handaxes from Bose Basin (China) and the Western Acheulean Indicates Convergence of Form, Not Cognitive Differences," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
    5. Lisa Sakamoto & Hiromi Kajiya-Kanegae & Koji Noshita & Hideki Takanashi & Masaaki Kobayashi & Toru Kudo & Kentaro Yano & Tsuyoshi Tokunaga & Nobuhiro Tsutsumi & Hiroyoshi Iwata, 2019. "Comparison of shape quantification methods for genomic prediction, and genome-wide association study of sorghum seed morphology," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
    6. Mardia, Kanti V. & Wiechers, Henrik & Eltzner, Benjamin & Huckemann, Stephan F., 2022. "Principal component analysis and clustering on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    8. Brandon P Hedrick & Peter Dodson, 2013. "Lujiatun Psittacosaurids: Understanding Individual and Taphonomic Variation Using 3D Geometric Morphometrics," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-13, August.
    9. John Gower & Garmt Dijksterhuis, 1994. "Multivariate analysis of coffee images: A study in the simultaneous display of multivariate quantitative and qualitative variables for several assessors," Quality & Quantity: International Journal of Methodology, Springer, vol. 28(2), pages 165-184, May.
    10. Katherine L Bell & Christopher A Hamm & Arthur M Shapiro & Chris C Nice, 2017. "Sympatric, temporally isolated populations of the pine white butterfly Neophasia menapia, are morphologically and genetically differentiated," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
    11. repec:ehu:biltok:5712 is not listed on IDEAS
    12. Peter Verboon & Willem Heiser, 1992. "Resistant orthogonal procrustes analysis," Journal of Classification, Springer;The Classification Society, vol. 9(2), pages 237-256, December.
    13. Dahl, Tobias & Naes, Tormod, 2006. "A bridge between Tucker-1 and Carroll's generalized canonical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3086-3098, July.
    14. Young-Jin Kwon & Do-Hyun Kim & Byung-Chang Son & Kyoung-Ho Choi & Sungbok Kwak & Taehong Kim, 2022. "A Work-Related Musculoskeletal Disorders (WMSDs) Risk-Assessment System Using a Single-View Pose Estimation Model," IJERPH, MDPI, vol. 19(16), pages 1-19, August.
    15. V Alex Sotola & Cody A Craig & Peter J Pfaff & Jeremy D Maikoetter & Noland H Martin & Timothy H Bonner, 2019. "Effect of preservation on fish morphology over time: Implications for morphological studies," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    16. Thomas W. Davies & Philipp Gunz & Fred Spoor & Zeresenay Alemseged & Agness Gidna & Jean-Jacques Hublin & William H. Kimbel & Ottmar Kullmer & William P. Plummer & Clément Zanolli & Matthew M. Skinner, 2024. "Dental morphology in Homo habilis and its implications for the evolution of early Homo," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Huckemann, Stephan & Hotz, Thomas, 2009. "Principal component geodesics for planar shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 699-714, April.
    18. Erdem, Seda & Rigby, Dan, 2011. "Using Best Worst Scaling To Investigate Perceptions Of Control & Concern Over Food And Non-Food Risks," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108790, Agricultural Economics Society.
    19. Ian L. Dryden & Jonathan D. Hirst & James L. Melville, 2007. "Statistical Analysis of Unlabeled Point Sets: Comparing Molecules in Chemoinformatics," Biometrics, The International Biometric Society, vol. 63(1), pages 237-251, March.
    20. Edmund Peay, 1988. "Multidimensional rotation and scaling of configurations to optimal agreement," Psychometrika, Springer;The Psychometric Society, vol. 53(2), pages 199-208, June.
    21. Bajocco, S. & Rosati, L. & Ricotta, C., 2010. "Knowing fire incidence through fuel phenology: A remotely sensed approach," Ecological Modelling, Elsevier, vol. 221(1), pages 59-66.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pdig00:0000068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: digitalhealth (email available below). General contact details of provider: https://journals.plos.org/digitalhealth .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.