IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012457.html
   My bibliography  Save this article

Characterizing the dynamics, reactivity and controllability of moods in depression with a Kalman filter

Author

Listed:
  • Jolanda Malamud
  • Sinan Guloksuz
  • Ruud van Winkel
  • Philippe Delespaul
  • Marc A F De Hert
  • Catherine Derom
  • Evert Thiery
  • Nele Jacobs
  • Bart P F Rutten
  • Quentin J M Huys

Abstract

Background: Mood disorders involve a complex interplay between multifaceted internal emotional states, and complex external inputs. Dynamical systems theory suggests that this interplay between aspects of moods and environmental stimuli may hence determine key psychopathological features of mood disorders, including the stability of mood states, the response to external inputs, how controllable mood states are, and what interventions are most likely to be effective. However, a comprehensive computational approach to all these aspects has not yet been undertaken. Methods: Here, we argue that the combination of ecological momentary assessments (EMA) with a well-established dynamical systems framework—the humble Kalman filter—enables a comprehensive account of all these aspects. We first introduce the key features of the Kalman filter and optimal control theory and their relationship to aspects of psychopathology. We then examine the psychometric and inferential properties of combining EMA data with Kalman filtering across realistic scenarios. Finally, we apply the Kalman filter to a series of EMA datasets comprising over 700 participants with and without symptoms of depression. Results: The results show a naive Kalman filter approach performs favourably compared to the standard vector autoregressive approach frequently employed, capturing key aspects of the data better. Furthermore, it suggests that the depressed state involves alterations to interactions between moods; alterations to how moods responds to external inputs; and as a result an alteration in how controllable mood states are. We replicate these findings qualitatively across datasets and explore an extension to optimal control theory to guide therapeutic interventions. Conclusions: Mood dynamics are richly and profoundly altered in depressed states. The humble Kalman filter is a well-established, rich framework to characterise mood dynamics. Its application to EMA data is valid; straightforward; and likely to result in substantial novel insights both into mechanisms and treatments. Author summary: In this study, we aimed to understand the dynamics of mood in the context of depression, utilizing experience sampling data and well-established mathematical techniques. Our approach sought to overcome limitations of traditional methods and accurately capture the dynamics of moods in real-life situations. Through the application of a Kalman filter to examine mood trajectories in experience sampling data from various datasets, including both patients with depression and healthy controls, we were able to capture the evolution of mood, interaction among different mood items, and responsiveness to environmental inputs. The study revealed distinct dynamical features characteristic of depression, highlighted the potential of using external factors to influence mood and potentially shift between stable emotional states. The findings offer valuable insights into the impact of depression on mood dynamics and potential intervention strategies, contributing to a better understanding of depression mechanisms. The study also acknowledges the challenges of employing complex models to depict sparse and noisy data, emphasizing the need for further research to address these complexities.

Suggested Citation

  • Jolanda Malamud & Sinan Guloksuz & Ruud van Winkel & Philippe Delespaul & Marc A F De Hert & Catherine Derom & Evert Thiery & Nele Jacobs & Bart P F Rutten & Quentin J M Huys, 2024. "Characterizing the dynamics, reactivity and controllability of moods in depression with a Kalman filter," PLOS Computational Biology, Public Library of Science, vol. 20(9), pages 1-23, September.
  • Handle: RePEc:plo:pcbi00:1012457
    DOI: 10.1371/journal.pcbi.1012457
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012457
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012457&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    2. Angélique O J Cramer & Claudia D van Borkulo & Erik J Giltay & Han L J van der Maas & Kenneth S Kendler & Marten Scheffer & Denny Borsboom, 2016. "Major Depression as a Complex Dynamic System," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-20, December.
    3. Staudenmayer, John & Buonaccorsi, John P., 2005. "Measurement Error in Linear Autoregressive Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 841-852, September.
    4. Teague R. Henry & Donald J. Robinaugh & Eiko I. Fried, 2022. "On the Control of Psychological Networks," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 188-213, March.
    5. Georgia Koppe & Hazem Toutounji & Peter Kirsch & Stefanie Lis & Daniel Durstewitz, 2019. "Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-35, August.
    6. Sacha Epskamp & Mijke Rhemtulla & Denny Borsboom, 2017. "Generalized Network Psychometrics: Combining Network and Latent Variable Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 904-927, December.
    7. repec:plo:pone00:0060188 is not listed on IDEAS
    8. Stijn de Vos & Klaas J Wardenaar & Elisabeth H Bos & Ernst C Wit & Mara E J Bouwmans & Peter de Jonge, 2017. "An investigation of emotion dynamics in major depressive disorder patients and healthy persons using sparse longitudinal networks," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
    9. Egon Dejonckheere & Merijn Mestdagh & Marlies Houben & Isa Rutten & Laura Sels & Peter Kuppens & Francis Tuerlinckx, 2019. "Complex affect dynamics add limited information to the prediction of psychological well-being," Nature Human Behaviour, Nature, vol. 3(5), pages 478-491, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadja Bodner & Laura Bringmann & Francis Tuerlinckx & Peter Jonge & Eva Ceulemans, 2022. "ConNEcT: A Novel Network Approach for Investigating the Co-occurrence of Binary Psychopathological Symptoms Over Time," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 107-132, March.
    2. Florian Peters & Simas Kucinskas, 2018. "Measuring Biases in Expectation Formation," Tinbergen Institute Discussion Papers 18-058/IV, Tinbergen Institute.
    3. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    4. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    5. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    6. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    7. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    8. Tomoya Mori & Daisuke Murakami, 2025. "Sustainability of cities under declining population and decreasing distance frictions: The case of Japan," KIER Working Papers 1117, Kyoto University, Institute of Economic Research.
    9. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    10. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    11. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    12. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    13. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    14. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    15. repec:spo:wpmain:info:hdl:2441/1904 is not listed on IDEAS
    16. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    17. Brave, Scott A. & Gascon, Charles & Kluender, William & Walstrum, Thomas, 2021. "Predicting benchmarked US state employment data in real time," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1261-1275.
    18. Blasques, F. & Francq, Christian & Laurent, Sébastien, 2024. "Autoregressive conditional betas," Journal of Econometrics, Elsevier, vol. 238(2).
    19. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    20. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    21. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    22. Bowen Fu & Mengheng Li & Qazi Haque, 2025. "Exchange Rates, Uncovered Interest Parity, and Time‐Varying Fama Regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(3), pages 310-324, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.