IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012022.html
   My bibliography  Save this article

StellarPath: Hierarchical-vertical multi-omics classifier synergizes stable markers and interpretable similarity networks for patient profiling

Author

Listed:
  • Luca Giudice
  • Ahmed Mohamed
  • Tarja Malm

Abstract

The Patient Similarity Network paradigm implies modeling the similarity between patients based on specific data. The similarity can summarize patients’ relationships from high-dimensional data, such as biological omics. The end PSN can undergo un/supervised learning tasks while being strongly interpretable, tailored for precision medicine, and ready to be analyzed with graph-theory methods. However, these benefits are not guaranteed and depend on the granularity of the summarized data, the clarity of the similarity measure, the complexity of the network’s topology, and the implemented methods for analysis. To date, no patient classifier fully leverages the paradigm’s inherent benefits. PSNs remain complex, unexploited, and meaningless. We present StellarPath, a hierarchical-vertical patient classifier that leverages pathway analysis and patient similarity concepts to find meaningful features for both classes and individuals. StellarPath processes omics data, hierarchically integrates them into pathways, and uses a novel similarity to measure how patients’ pathway activity is alike. It selects biologically relevant molecules, pathways, and networks, considering molecule stability and topology. A graph convolutional neural network then predicts unknown patients based on known cases. StellarPath excels in classification performances and computational resources across sixteen datasets. It demonstrates proficiency in inferring the class of new patients described in external independent studies, following its initial training and testing phases on a local dataset. It advances the PSN paradigm and provides new markers, insights, and tools for in-depth patient profiling.Author summary: A clinician’s decision-making process for diagnosing an unknown patient involves selecting properties where patients with the same condition are alike but distinct from others, creating a mental database of known patients linked by their similarities, and evaluating the condition of the unknown patient based on its similarities with those in the database. However, constructing a network from biological omics data, which profiles patients through thousands of molecules, poses a significant challenge. The network’s quality hinges on the choice of the molecules used to determine the patients’ similarities, the significance of the similarity measure, and the network’s structure interpretability. StellarPath is a patient classifier based on patient similarity networks. It manages data normalization, molecule selection, and combines molecule types based on their interactions. It determines key cellular functions distinguishing patient classes and models how much two patients are similar based on how their cells regulate each function. It retains networks that group similar patients while separating different ones, using this data to predict unknown patients’ outcomes. Tested on seventeen datasets, StellarPath has proven efficient and insightful. It pushes the patient similarity network paradigm forward, offers reliable markers, and provides new tools and insights for patient analysis.

Suggested Citation

  • Luca Giudice & Ahmed Mohamed & Tarja Malm, 2024. "StellarPath: Hierarchical-vertical multi-omics classifier synergizes stable markers and interpretable similarity networks for patient profiling," PLOS Computational Biology, Public Library of Science, vol. 20(4), pages 1-29, April.
  • Handle: RePEc:plo:pcbi00:1012022
    DOI: 10.1371/journal.pcbi.1012022
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012022
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012022&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Long Cai & Nir Friedman & X. Sunney Xie, 2006. "Stochastic protein expression in individual cells at the single molecule level," Nature, Nature, vol. 440(7082), pages 358-362, March.
    2. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bar Haim Y. & Booth James G. & Wells Martin T., 2012. "A Mixture-Model Approach for Parallel Testing for Unequal Variances," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-21, January.
    2. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    3. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    4. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    5. repec:plo:pone00:0103514 is not listed on IDEAS
    6. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    7. Kerr Kathleen F., 2012. "Optimality Criteria for the Design of 2-Color Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-9, January.
    8. Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
    9. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    11. Sora Yoon & Seon-Young Kim & Dougu Nam, 2016. "Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    12. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    13. Sinan Xiong & Jianbiao Zhou & Tze King Tan & Tae-Hoon Chung & Tuan Zea Tan & Sabrina Hui-Min Toh & Nicole Xin Ning Tang & Yunlu Jia & Yi Xiang See & Melissa Jane Fullwood & Takaomi Sanda & Wee-Joo Chn, 2024. "Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    14. Lee, Julian, 2023. "Poisson distributions in stochastic dynamics of gene expression: What events do they count?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    15. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    16. Nan Li & Matthew N. McCall & Zhijin Wu, 2017. "Establishing Informative Prior for Gene Expression Variance from Public Databases," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 160-177, June.
    17. Brian Caffo & Liu Dongmei & Giovanni Parmigiani, 2004. "Power Conjugate Multilevel Models with Applications to Genomics," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1062, Berkeley Electronic Press.
    18. Nott, David J. & Yu, Zeming & Chan, Eva & Cotsapas, Chris & Cowley, Mark J. & Pulvers, Jeremy & Williams, Rohan & Little, Peter, 2007. "Hierarchical Bayes variable selection and microarray experiments," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 852-872, April.
    19. Santu Ghosh & Alan M. Polansky, 2022. "Large-Scale Simultaneous Testing Using Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 808-843, August.
    20. Qianxing Mo & Faming Liang, 2010. "Bayesian Modeling of ChIP-chip Data Through a High-Order Ising Model," Biometrics, The International Biometric Society, vol. 66(4), pages 1284-1294, December.
    21. Ahmed Hossain & Hafiz T.A. Khan, 2016. "Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2538-2549, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.