IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i14p2538-2549.html
   My bibliography  Save this article

Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components

Author

Listed:
  • Ahmed Hossain
  • Hafiz T.A. Khan

Abstract

Differential analysis techniques are commonly used to offer scientists a dimension reduction procedure and an interpretable gateway to variable selection, especially when confronting high-dimensional genomic data. Huang et al. used a gene expression profile of breast cancer cell lines to identify genomic markers which are highly correlated with in vitro sensitivity of a drug Dasatinib. They considered three statistical methods to identify differentially expressed genes and finally used the results from the intersection. But the statistical methods that are used in the paper are not sufficient to select the genomic markers. In this paper we used three alternative statistical methods to select a combined list of genomic markers and compared the genes that were proposed by Huang et al. We then proposed to use sparse principal component analysis (Sparse PCA) to identify a final list of genomic markers. The Sparse PCA incorporates correlation into account among the genes and helps to draw a successful genomic markers discovery. We present a new and a small set of genomic markers to separate out the groups of patients effectively who are sensitive to the drug Dasatinib. The analysis procedure will also encourage scientists in identifying genomic markers that can help to separate out two groups.

Suggested Citation

  • Ahmed Hossain & Hafiz T.A. Khan, 2016. "Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2538-2549, October.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:14:p:2538-2549
    DOI: 10.1080/02664763.2016.1142941
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1142941
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1142941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hossain Ahmed & Beyene Joseph, 2013. "Estimation of weighted log partial area under the ROC curve and its application to MicroRNA expression data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(6), pages 743-755, December.
    2. Margaret Sullivan Pepe & Gary Longton & Garnet L. Anderson & Michel Schummer, 2003. "Selecting Differentially Expressed Genes from Microarray Experiments," Biometrics, The International Biometric Society, vol. 59(1), pages 133-142, March.
    3. Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
    4. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bickel David R., 2008. "Correcting the Estimated Level of Differential Expression for Gene Selection Bias: Application to a Microarray Study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-27, March.
    2. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    3. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    4. Hossain Ahmed & Beyene Joseph, 2013. "Estimation of weighted log partial area under the ROC curve and its application to MicroRNA expression data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(6), pages 743-755, December.
    5. Hirakawa, Akihiro & Hamada, Chikuma & Yoshimura, Isao, 2011. "Sample size calculation for a regularized t-statistic in microarray experiments," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 870-875, July.
    6. Dazard, Jean-Eudes & Sunil Rao, J., 2012. "Joint adaptive mean–variance regularization and variance stabilization of high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2317-2333.
    7. Montazeri Zahra & Yanofsky Corey M. & Bickel David R., 2010. "Shrinkage Estimation of Effect Sizes as an Alternative to Hypothesis Testing Followed by Estimation in High-Dimensional Biology: Applications to Differential Gene Expression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    8. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    9. Debashis Ghosh & Arul Chinnaiyan, 2004. "Covariate adjustment in the analysis of microarray data from clinical studies," The University of Michigan Department of Biostatistics Working Paper Series 1030, Berkeley Electronic Press.
    10. Hwang J.T. Gene & Liu Peng, 2010. "Optimal Tests Shrinking Both Means and Variances Applicable to Microarray Data Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-35, October.
    11. Rossell David & Guerra Rudy & Scott Clayton, 2008. "Semi-Parametric Differential Expression Analysis via Partial Mixture Estimation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-29, April.
    12. Mark A. van de Wiel & Kyung In Kim, 2007. "Estimating the False Discovery Rate Using Nonparametric Deconvolution," Biometrics, The International Biometric Society, vol. 63(3), pages 806-815, September.
    13. Dørum Guro & Snipen Lars & Solheim Margrete & Sæbø Solve, 2009. "Rotation Testing in Gene Set Enrichment Analysis for Small Direct Comparison Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-24, July.
    14. Robin, Stephane & Bar-Hen, Avner & Daudin, Jean-Jacques & Pierre, Laurent, 2007. "A semi-parametric approach for mixture models: Application to local false discovery rate estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5483-5493, August.
    15. Ji Tieming & Liu Peng & Nettleton Dan, 2012. "Borrowing Information Across Genes and Experiments for Improved Error Variance Estimation in Microarray Data Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-29, May.
    16. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    17. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    18. Pounds Stanley B. & Gao Cuilan L. & Zhang Hui, 2012. "Empirical Bayesian Selection of Hypothesis Testing Procedures for Analysis of Sequence Count Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-32, October.
    19. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    20. Li-Xuan Qin & Steven G. Self, 2006. "The Clustering of Regression Models Method with Applications in Gene Expression Data," Biometrics, The International Biometric Society, vol. 62(2), pages 526-533, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:14:p:2538-2549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.