IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2007i12p5483-5493.html
   My bibliography  Save this article

A semi-parametric approach for mixture models: Application to local false discovery rate estimation

Author

Listed:
  • Robin, Stephane
  • Bar-Hen, Avner
  • Daudin, Jean-Jacques
  • Pierre, Laurent

Abstract

No abstract is available for this item.

Suggested Citation

  • Robin, Stephane & Bar-Hen, Avner & Daudin, Jean-Jacques & Pierre, Laurent, 2007. "A semi-parametric approach for mixture models: Application to local false discovery rate estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5483-5493, August.
  • Handle: RePEc:eee:csdana:v:51:y:2007:i:12:p:5483-5493
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00099-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allison, David B. & Gadbury, Gary L. & Heo, Moonseong & Fernandez, Jose R. & Lee, Cheol-Koo & Prolla, Tomas A. & Weindruch, Richard, 2002. "A mixture model approach for the analysis of microarray gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 1-20, March.
    2. Priebe, Carey E. & Marchette, David J., 2000. "Alternating kernel and mixture density estimates," Computational Statistics & Data Analysis, Elsevier, vol. 35(1), pages 43-65, November.
    3. Marco Di Marzio, 2004. "Boosting kernel density estimates: A bias reduction technique?," Biometrika, Biometrika Trust, vol. 91(1), pages 226-233, March.
    4. Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
    5. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    6. Paul Delmar & Stéphane Robin & Diana Tronik‐Le Roux & Jean Jacques Daudin, 2005. "Mixture model on the variance for the differential analysis of gene expression data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 31-50, January.
    7. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    8. Efron, Bradley, 2004. "Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 96-104, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Volant, Stevenn & Martin Magniette, Marie-Laure & Robin, Stéphane, 2012. "Variational Bayes approach for model aggregation in unsupervised classification with Markovian dependency," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2375-2387.
    2. C Matias & T Rebafka & F Villers, 2018. "A semiparametric extension of the stochastic block model for longitudinal networks," Biometrika, Biometrika Trust, vol. 105(3), pages 665-680.
    3. Jaspers, Stijn & Aerts, Marc & Verbeke, Geert & Beloeil, Pierre-Alexandre, 2014. "A new semi-parametric mixture model for interval censored data, with applications in the field of antimicrobial resistance," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 30-42.
    4. Allison, David B. & Visscher, Peter M. & Rosa, Guilherme J.M. & Amos, Christopher I., 2009. "Statistical genetics & statistical genomics: Where biology, epistemology, statistics, and computation collide," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1531-1534, March.
    5. Rohit Kumar Patra & Bodhisattva Sen, 2016. "Estimation of a two-component mixture model with applications to multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 869-893, September.
    6. David R. Bickel, 2013. "Minimax-Optimal Strength of Statistical Evidence for a Composite Alternative Hypothesis," International Statistical Review, International Statistical Institute, vol. 81(2), pages 188-206, August.
    7. Marot Guillemette & Mayer Claus-Dieter, 2009. "Sequential Analysis for Microarray Data Based on Sensitivity and Meta-Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-33, January.
    8. Friguet, Chloé & Causeur, David, 2011. "Estimation of the proportion of true null hypotheses in high-dimensional data under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2665-2676, September.
    9. Park, DoHwan & Park, Junyong & Zhong, Xiaosong & Sadelain, Michel, 2011. "Estimation of empirical null using a mixture of normals and its use in local false discovery rate," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2421-2432, July.
    10. Rostyslav Maiboroda & Olena Sugakova, 2012. "Nonparametric density estimation for symmetric distributions by contaminated data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(1), pages 109-126, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    2. Bickel David R., 2008. "Correcting the Estimated Level of Differential Expression for Gene Selection Bias: Application to a Microarray Study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-27, March.
    3. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    4. He, Yi & Pan, Wei & Lin, Jizhen, 2006. "Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 641-658, November.
    5. Gordon, Alexander & Chen, Linlin & Glazko, Galina & Yakovlev, Andrei, 2009. "Balancing type one and two errors in multiple testing for differential expression of genes," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1622-1629, March.
    6. Dazard, Jean-Eudes & Sunil Rao, J., 2012. "Joint adaptive mean–variance regularization and variance stabilization of high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2317-2333.
    7. Montazeri Zahra & Yanofsky Corey M. & Bickel David R., 2010. "Shrinkage Estimation of Effect Sizes as an Alternative to Hypothesis Testing Followed by Estimation in High-Dimensional Biology: Applications to Differential Gene Expression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    8. Sairam Rayaprolu & Zhiyi Chi, 2021. "False Discovery Variance Reduction in Large Scale Simultaneous Hypothesis Tests," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 711-733, September.
    9. Nikolaos Ignatiadis & Wolfgang Huber, 2021. "Covariate powered cross‐weighted multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 720-751, September.
    10. Muir, W.M. & Rosa, G.J.M. & Pittendrigh, B.R. & Xu, Z. & Rider, S.D. & Fountain, M. & Ogas, J., 2009. "A mixture model approach for the analysis of small exploratory microarray experiments," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1566-1576, March.
    11. Andrew Y. Chen, 2022. "Do t-Statistic Hurdles Need to be Raised?," Papers 2204.10275, arXiv.org, revised Feb 2024.
    12. Marot Guillemette & Mayer Claus-Dieter, 2009. "Sequential Analysis for Microarray Data Based on Sensitivity and Meta-Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-33, January.
    13. Bradley Efron, 2007. "Doing thousands of hypothesis tests at the same time," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 3-21.
    14. Habiger, Joshua D. & Peña, Edsel A., 2014. "Compound p-value statistics for multiple testing procedures," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 153-166.
    15. Pounds Stanley B. & Gao Cuilan L. & Zhang Hui, 2012. "Empirical Bayesian Selection of Hypothesis Testing Procedures for Analysis of Sequence Count Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-32, October.
    16. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    17. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    18. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    19. Ahmed Hossain & Hafiz T.A. Khan, 2016. "Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2538-2549, October.
    20. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2007:i:12:p:5483-5493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.