IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011342.html
   My bibliography  Save this article

Efficient sampling-based Bayesian Active Learning for synaptic characterization

Author

Listed:
  • Camille Gontier
  • Simone Carlo Surace
  • Igor Delvendahl
  • Martin Müller
  • Jean-Pascal Pfister

Abstract

Bayesian Active Learning (BAL) is an efficient framework for learning the parameters of a model, in which input stimuli are selected to maximize the mutual information between the observations and the unknown parameters. However, the applicability of BAL to experiments is limited as it requires performing high-dimensional integrations and optimizations in real time. Current methods are either too time consuming, or only applicable to specific models. Here, we propose an Efficient Sampling-Based Bayesian Active Learning (ESB-BAL) framework, which is efficient enough to be used in real-time biological experiments. We apply our method to the problem of estimating the parameters of a chemical synapse from the postsynaptic responses to evoked presynaptic action potentials. Using synthetic data and synaptic whole-cell patch-clamp recordings, we show that our method can improve the precision of model-based inferences, thereby paving the way towards more systematic and efficient experimental designs in physiology.Author summary: Optimizing the design of an experiment is a critical problem in biology. However, most experiments still rely on suboptimal designs, which may not yield sufficient information about the studied system. Consequently, such experiments often require more observations to reach a certain result. An efficient theoretical framework to alleviate this issue is called Optimal Experiment Design (OED), in which experimental protocols are selected to reduce the uncertainty of inferred parameters. However, the applicability of OED methods to actual experiments is limited: they often require computations which are too long for sequential experiments, and do not generalize to different models. Here, we developed a method called Efficient Sampling-Based Bayesian Active Learning (ESB-BAL), and apply it to the problem of estimating the parameters of a chemical synapse from its evoked postsynaptic currents. After each new observation, the optimal next stimulation time can be computed using ESB-BAL. Using recordings in cerebellar brain slices, we show that our method is fast enough to be used in real-time biological experiments and can significantly reduce the uncertainty of inferred parameters. Our method can be readily used by experimentalists via a simple interface. Moreover, our proposed solution is general enough to be applicable to different experimental settings.

Suggested Citation

  • Camille Gontier & Simone Carlo Surace & Igor Delvendahl & Martin Müller & Jean-Pascal Pfister, 2023. "Efficient sampling-based Bayesian Active Learning for synaptic characterization," PLOS Computational Biology, Public Library of Science, vol. 19(8), pages 1-28, August.
  • Handle: RePEc:plo:pcbi00:1011342
    DOI: 10.1371/journal.pcbi.1011342
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011342
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011342&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elizabeth G. Ryan & Christopher C. Drovandi & James M. McGree & Anthony N. Pettitt, 2016. "A Review of Modern Computational Algorithms for Bayesian Optimal Design," International Statistical Review, International Statistical Institute, vol. 84(1), pages 128-154, April.
    2. P. Sebastiani & H. P. Wynn, 2000. "Maximum entropy sampling and optimal Bayesian experimental design," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 145-157.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hessa Al-Thani & Jon Lee, 2020. "An R Package for Generating Covariance Matrices for Maximum-Entropy Sampling from Precipitation Chemistry Data," SN Operations Research Forum, Springer, vol. 1(3), pages 1-21, September.
    2. David J Price & Alexandre Breuzé & Richard Dybowski & Piero Mastroeni & Olivier Restif, 2017. "An efficient moments-based inference method for within-host bacterial infection dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-27, November.
    3. Ng'ombe, John, 2019. "Economics of the Greenseeder Hand Planter, Discrete Choice Modeling, and On-Farm Field Experimentation," Thesis Commons jckt7, Center for Open Science.
    4. Christopher Tosh & Mauricio Tec & Jessica B. White & Jeffrey F. Quinn & Glorymar Ibanez Sanchez & Paul Calder & Andrew L. Kung & Filemon S. Dela Cruz & Wesley Tansey, 2025. "A Bayesian active learning platform for scalable combination drug screens," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    5. Anyosa, Susan & Eidsvik, Jo & Pizarro, Oscar, 2023. "Adaptive spatial designs minimizing the integrated Bernoulli variance in spatial logistic regression models - with an application to benthic habitat mapping," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    6. Rodriguez, Sergio & Ludkovski, Michael, 2020. "Probabilistic bisection with spatial metamodels," European Journal of Operational Research, Elsevier, vol. 286(2), pages 588-603.
    7. Dehideniya, Mahasen B. & Drovandi, Christopher C. & McGree, James M., 2018. "Optimal Bayesian design for discriminating between models with intractable likelihoods in epidemiology," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 277-297.
    8. Nikos E Papanikolaou & Hayden Moffat & Argyro Fantinou & Dionysios P Perdikis & Michael Bode & Christopher Drovandi, 2023. "Adaptive experimental design produces superior and more efficient estimates of predator functional response," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-14, July.
    9. Joel A Paulson & Marc Martin-Casas & Ali Mesbah, 2019. "Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-35, August.
    10. Jacopo Paglia & Jo Eidsvik & Juha Karvanen, 2022. "Efficient spatial designs using Hausdorff distances and Bayesian optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1060-1084, September.
    11. Jun Yu & HaiYing Wang, 2022. "Subdata selection algorithm for linear model discrimination," Statistical Papers, Springer, vol. 63(6), pages 1883-1906, December.
    12. Granig, Wolfgang & Faller, Lisa-Marie & Hammerschmidt, Dirk & Zangl, Hubert, 2019. "Dependability considerations of redundant sensor systems," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    13. Brendan Kochunas & Xun Huan, 2021. "Digital Twin Concepts with Uncertainty for Nuclear Power Applications," Energies, MDPI, vol. 14(14), pages 1-32, July.
    14. Kim, Taejin & Lee, Gueseok & Youn, Byeng D., 2019. "PHM experimental design for effective state separation using Jensen–Shannon divergence," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    15. Belmiro P. M. Duarte & Anthony C. Atkinson & Satya P. Singh & Marco S. Reis, 2023. "Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests," Statistical Papers, Springer, vol. 64(2), pages 587-615, April.
    16. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    17. Zhongzhu Chen & Marcia Fampa & Jon Lee, 2023. "On Computing with Some Convex Relaxations for the Maximum-Entropy Sampling Problem," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 368-385, March.
    18. Cathleen Johnson & Aurélien Baillon & Han Bleichrodt & Zhihua Li & Dennie Dolder & Peter P. Wakker, 2021. "Prince: An improved method for measuring incentivized preferences," Journal of Risk and Uncertainty, Springer, vol. 62(1), pages 1-28, February.
    19. repec:osf:thesis:jckt7_v1 is not listed on IDEAS
    20. Han, Cong & Chaloner, Kathryn, 2004. "A note on optimal designs for two or more treatment groups," Statistics & Probability Letters, Elsevier, vol. 69(1), pages 81-89, August.
    21. Arno Strouwen & Bart M. Nicolaï & Peter Goos, 2023. "Adaptive and robust experimental design for linear dynamical models using Kalman filter," Statistical Papers, Springer, vol. 64(4), pages 1209-1231, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.