IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010312.html
   My bibliography  Save this article

Understanding the structure of cognitive noise

Author

Listed:
  • Jian-Qiao Zhu
  • Pablo León-Villagrá
  • Nick Chater
  • Adam N Sanborn

Abstract

Human cognition is fundamentally noisy. While routinely regarded as a nuisance in experimental investigation, the few studies investigating properties of cognitive noise have found surprising structure. A first line of research has shown that inter-response-time distributions are heavy-tailed. That is, response times between subsequent trials usually change only a small amount, but with occasional large changes. A second, separate, line of research has found that participants’ estimates and response times both exhibit long-range autocorrelations (i.e., 1/f noise). Thus, each judgment and response time not only depends on its immediate predecessor but also on many previous responses. These two lines of research use different tasks and have distinct theoretical explanations: models that account for heavy-tailed response times do not predict 1/f autocorrelations and vice versa. Here, we find that 1/f noise and heavy-tailed response distributions co-occur in both types of tasks. We also show that a statistical sampling algorithm, developed to deal with patchy environments, generates both heavy-tailed distributions and 1/f noise, suggesting that cognitive noise may be a functional adaptation to dealing with a complex world.Author summary: Human behavior is inherently noisy, but this noise is surprisingly structured. Moment-by-moment fluctuations in responses are usually small but also occasionally quite large, mirroring a pattern seen in animal foraging. Separate work using different tasks has shown that response fluctuations do not depend just on recent responses, but also on a long history of past responses. In two experiments using very different tasks, we found that these two features co-occur. We show that a particular kind of algorithm, developed in computer science and statistics to approximate answers to difficult probabilistic problems, exhibits both these features as well, suggesting that noise is functionally important.

Suggested Citation

  • Jian-Qiao Zhu & Pablo León-Villagrá & Nick Chater & Adam N Sanborn, 2022. "Understanding the structure of cognitive noise," PLOS Computational Biology, Public Library of Science, vol. 18(8), pages 1-11, August.
  • Handle: RePEc:plo:pcbi00:1010312
    DOI: 10.1371/journal.pcbi.1010312
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010312
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010312&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. M. Viswanathan & Sergey V. Buldyrev & Shlomo Havlin & M. G. E. da Luz & E. P. Raposo & H. Eugene Stanley, 1999. "Optimizing the success of random searches," Nature, Nature, vol. 401(6756), pages 911-914, October.
    2. B. B. Mandelbrot, 2001. "Scaling in financial prices: III. Cartoon Brownian motions in multifractal time," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 427-440.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    2. Priscila C A da Silva & Tiago V Rosembach & Anésia A Santos & Márcio S Rocha & Marcelo L Martins, 2014. "Normal and Tumoral Melanocytes Exhibit q-Gaussian Random Search Patterns," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    3. Ma, Brian O. & Davis, Brad H. & Gillespie, David R. & VanLaerhoven, Sherah L., 2009. "Incorporating behaviour into simple models of dispersal using the biological control agent Dicyphus hesperus," Ecological Modelling, Elsevier, vol. 220(23), pages 3271-3279.
    4. Marina E Wosniack & Marcos C Santos & Ernesto P Raposo & Gandhi M Viswanathan & Marcos G E da Luz, 2017. "The evolutionary origins of Lévy walk foraging," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    5. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Cody T Ross & Bruce Winterhalder, 2018. "Evidence for encounter-conditional, area-restricted search in a preliminary study of Colombian blowgun hunters," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-13, December.
    7. Pascual López-López & José Benavent-Corai & Clara García-Ripollés & Vicente Urios, 2013. "Scavengers on the Move: Behavioural Changes in Foraging Search Patterns during the Annual Cycle," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-9, January.
    8. José Ignacio Santos & María Pereda & Débora Zurro & Myrian Álvarez & Jorge Caro & José Manuel Galán & Ivan Briz i Godino, 2015. "Effect of Resource Spatial Correlation and Hunter-Fisher-Gatherer Mobility on Social Cooperation in Tierra del Fuego," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-29, April.
    9. Pauline Formaglio & Marina E. Wosniack & Raphael M. Tromer & Jaderson G. Polli & Yuri B. Matos & Hang Zhong & Ernesto P. Raposo & Marcos G. E. Luz & Rogerio Amino, 2023. "Plasmodium sporozoite search strategy to locate hotspots of blood vessel invasion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    11. Sophie Lardy & Daniel Fortin & Olivier Pays, 2016. "Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    12. LaScala-Gruenewald, Diana E. & Mehta, Rohan S. & Liu, Yu & Denny, Mark W., 2019. "Sensory perception plays a larger role in foraging efficiency than heavy-tailed movement strategies," Ecological Modelling, Elsevier, vol. 404(C), pages 69-82.
    13. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    14. Toman, Kellan & Voulgarakis, Nikolaos K., 2022. "Stochastic pursuit-evasion curves for foraging dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    15. Cédric Sueur & Léa Briard & Odile Petit, 2011. "Individual Analyses of Lévy Walk in Semi-Free Ranging Tonkean Macaques (Macaca tonkeana)," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-8, October.
    16. Wilhelm Berghorn & Sascha Otto, 2017. "Mandelbrot Market-Model and Momentum," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 8(3), pages 1-26, July.
    17. Qi, Jie & Rong, Zhihai, 2013. "The emergence of scaling laws search dynamics in a particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1522-1531.
    18. Rossitsa Yalamova, 2012. "Fractal Measures in Market Microstructure Research," Multinational Finance Journal, Multinational Finance Journal, vol. 16(1-2), pages 137-154, March - J.
    19. Zhang, Jingjing & Dennis, Todd E. & Landers, Todd J. & Bell, Elizabeth & Perry, George L.W., 2017. "Linking individual-based and statistical inferential models in movement ecology: A case study with black petrels (Procellaria parkinsoni)," Ecological Modelling, Elsevier, vol. 360(C), pages 425-436.
    20. Peter J M Van Haastert & Leonard Bosgraaf, 2009. "Food Searching Strategy of Amoeboid Cells by Starvation Induced Run Length Extension," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-7, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.