IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010078.html
   My bibliography  Save this article

Monitoring real-time transmission heterogeneity from incidence data

Author

Listed:
  • Yunjun Zhang
  • Tom Britton
  • Xiaohua Zhou

Abstract

The transmission heterogeneity of an epidemic is associated with a complex mixture of host, pathogen and environmental factors. And it may indicate superspreading events to reduce the efficiency of population-level control measures and to sustain the epidemic over a larger scale and a longer duration. Methods have been proposed to identify significant transmission heterogeneity in historic epidemics based on several data sources, such as contact history, viral genomes and spatial information, which may not be available, and more importantly ignore the temporal trend of transmission heterogeneity. Here we attempted to establish a convenient method to estimate real-time heterogeneity over an epidemic. Within the branching process framework, we introduced an instant-individualheterogenous infectiousness model to jointly characterize the variation in infectiousness both between individuals and among different times. With this model, we could simultaneously estimate the transmission heterogeneity and the reproduction number from incidence time series. We validated the model with data of both simulated and real outbreaks. Our estimates of the overall and real-time heterogeneities of the six epidemics were consistent with those presented in the literature. Additionally, our model is robust to the ubiquitous bias of under-reporting and misspecification of serial interval. By analyzing recent data from South Africa, we found evidence that the Omicron might be of more significant transmission heterogeneity than Delta. Our model based on incidence data was proved to be reliable in estimating the real-time transmission heterogeneity.Author summary: The transmission of many infectious diseases is usually heterogeneous in time and space. Such transmission heterogeneity may indicate superspreading events (where some infected individuals transmit to disproportionately more susceptibles than others), reduce the efficiency of the population-level control measures, and sustain the epidemic over a larger scale and a longer duration. Classical methods of monitoring epidemic spread centered on the reproduction number which represent the average transmission potential of the epidemic at the population level, but failed to reflect the systematic variation in transmission. Several recent methods have been proposed to identify significant transmission heterogeneity in the epidemics such as Ebola, MERS, COVID-19. However, these methods are developed based on some sophisticated information such as contact history, viral genome and spatial information, of the confirmed cases, which are typically field-specific and not easy to generalize. In this study, we proposed a simple and generic method of estimating transmission heterogeneity from incidence time series, which provided consistent estimation of heterogeneity with those records with detailed data. It also helps in exploring the transmission heterogeneity of the newly emerging variant of Omicron. Our model enhances current understanding of epidemic dynamics, and highlight the potential importance of targeted control measures.

Suggested Citation

  • Yunjun Zhang & Tom Britton & Xiaohua Zhou, 2022. "Monitoring real-time transmission heterogeneity from incidence data," PLOS Computational Biology, Public Library of Science, vol. 18(12), pages 1-24, December.
  • Handle: RePEc:plo:pcbi00:1010078
    DOI: 10.1371/journal.pcbi.1010078
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010078
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010078&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dyani Lewis, 2021. "Superspreading drives the COVID pandemic — and could help to tame it," Nature, Nature, vol. 590(7847), pages 544-546, February.
    2. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    2. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    3. repec:plo:pcbi00:1001058 is not listed on IDEAS
    4. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    5. Lazebnik, Teddy & Spiegel, Orr, 2025. "Individual variation affects outbreak magnitude and predictability in multi-pathogen model of pigeons visiting dairy farms," Ecological Modelling, Elsevier, vol. 499(C).
    6. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.
    7. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    8. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    9. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Maarten Jan Wensink & Linda Juel Ahrenfeldt & Sören Möller, 2020. "Variability Matters," IJERPH, MDPI, vol. 18(1), pages 1-8, December.
    11. Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
    12. Carolyn Ingram & Vicky Downey & Mark Roe & Yanbing Chen & Mary Archibald & Kadri-Ann Kallas & Jaspal Kumar & Peter Naughton & Cyril Onwuelazu Uteh & Alejandro Rojas-Chaves & Shibu Shrestha & Shiraz Sy, 2021. "COVID-19 Prevention and Control Measures in Workplace Settings: A Rapid Review and Meta-Analysis," IJERPH, MDPI, vol. 18(15), pages 1-26, July.
    13. repec:plo:pone00:0046310 is not listed on IDEAS
    14. Wayne M. Getz & Jean-Paul Gonzalez & Richard Salter & James Bangura & Colin Carlson & Moinya Coomber & Eric Dougherty & David Kargbo & Nathan D. Wolfe & Nadia Wauquier, 2015. "Tactics and Strategies for Managing Ebola Outbreaks and the Salience of Immunization," Post-Print hal-01214432, HAL.
    15. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.
    16. Glenn Ellison, 2024. "Implications of heterogeneous SIR models for analyses of COVID-19," Review of Economic Design, Springer;Society for Economic Design, vol. 28(4), pages 651-687, December.
    17. Kathrin Büttner & Joachim Krieter & Arne Traulsen & Imke Traulsen, 2013. "Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    18. Ellen Brooks-Pollock & Leon Danon & Hester Korthals Altes & Jennifer A Davidson & Andrew M T Pollock & Dick van Soolingen & Colin Campbell & Maeve K Lalor, 2020. "A model of tuberculosis clustering in low incidence countries reveals more transmission in the United Kingdom than the Netherlands between 2010 and 2015," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-14, March.
    19. Jonas I Liechti & Gabriel E Leventhal & Sebastian Bonhoeffer, 2017. "Host population structure impedes reversion to drug sensitivity after discontinuation of treatment," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-19, August.
    20. Zengmiao Wang & Peng Yang & Ruixue Wang & Luca Ferretti & Lele Zhao & Shan Pei & Xiaoli Wang & Lei Jia & Daitao Zhang & Yonghong Liu & Ziyan Liu & Quanyi Wang & Christophe Fraser & Huaiyu Tian, 2024. "Estimating the contribution of setting-specific contacts to SARS-CoV-2 transmission using digital contact tracing data," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    21. T Alex Perkins & Thomas W Scott & Arnaud Le Menach & David L Smith, 2013. "Heterogeneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-16, December.
    22. Otilia Boldea & Adriana Cornea-Madeira & João Madeira, 2023. "Disentangling the effect of measures, variants, and vaccines on SARS-CoV-2 infections in England: a dynamic intensity model," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 444-466.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.