IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005611.html
   My bibliography  Save this article

Rearrangement moves on rooted phylogenetic networks

Author

Listed:
  • Philippe Gambette
  • Leo van Iersel
  • Mark Jones
  • Manuel Lafond
  • Fabio Pardi
  • Celine Scornavacca

Abstract

Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network—that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose “horizontal” moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and “vertical” moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves—named rNNI and rSPR—reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results—separating the contributions of horizontal and vertical moves—we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a solid basis for practical phylogenetic network reconstruction.Author summary: Phylogenetic networks are used to represent reticulate evolution, that is, cases in which the tree-of-life metaphor for evolution breaks down, because some of its branches have merged at one or several points in the past. This may occur, for example, when some organisms in the phylogeny are hybrids. In this paper, we deal with an elementary question for the reconstruction of phylogenetic networks: how to explore the space of all possible networks. The fundamental component for this is the set of operations that should be employed to generate alternative hypotheses for what happened in the past—which serve as basic blocks for optimization techniques such as hill-climbing. Although these approaches have a long tradition in classic tree-based phylogenetics, their application to networks that explicitly represent reticulate evolution is relatively unexplored. This paper provides the fundamental definitions and theoretical results for subsequent work in practical methods for phylogenetic network reconstruction: we subdivide networks into layers, according to a generally-accepted measure of their complexity, and provide operations that allow both to fully explore each layer, and to move across different layers. These operations constitute natural generalizations of well-known operations for the exploration of the space of phylogenetic trees, the lowest layer in the hierarchy described above.

Suggested Citation

  • Philippe Gambette & Leo van Iersel & Mark Jones & Manuel Lafond & Fabio Pardi & Celine Scornavacca, 2017. "Rearrangement moves on rooted phylogenetic networks," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-21, August.
  • Handle: RePEc:plo:pcbi00:1005611
    DOI: 10.1371/journal.pcbi.1005611
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005611
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005611&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph K Pickrell & Jonathan K Pritchard, 2012. "Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data," PLOS Genetics, Public Library of Science, vol. 8(11), pages 1-17, November.
    2. Matthew D Rasmussen & Melissa J Hubisz & Ilan Gronau & Adam Siepel, 2014. "Genome-Wide Inference of Ancestral Recombination Graphs," PLOS Genetics, Public Library of Science, vol. 10(5), pages 1-27, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Cardona & Joan Carles Pons & Celine Scornavacca, 2019. "Generation of Binary Tree-Child phylogenetic networks," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marina Muzzio & Josefina M B Motti & Paula B Paz Sepulveda & Muh-ching Yee & Thomas Cooke & María R Santos & Virginia Ramallo & Emma L Alfaro & Jose E Dipierri & Graciela Bailliet & Claudio M Bravi & , 2018. "Population structure in Argentina," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-13, May.
    2. Baharian, Soheil & Gravel, Simon, 2018. "On the decidability of population size histories from finite allele frequency spectra," Theoretical Population Biology, Elsevier, vol. 120(C), pages 42-51.
    3. Nicola F. Müller & Kathryn E. Kistler & Trevor Bedford, 2022. "A Bayesian approach to infer recombination patterns in coronaviruses," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Alexandros G. Sotiropoulos & Epifanía Arango-Isaza & Tomohiro Ban & Chiara Barbieri & Salim Bourras & Christina Cowger & Paweł C. Czembor & Roi Ben-David & Amos Dinoor & Simon R. Ellwood & Johannes Gr, 2022. "Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Mateja Janeš & Minja Zorc & Maja Ferenčaković & Ino Curik & Peter Dovč & Vlatka Cubric-Curik, 2021. "Genomic Characterization of the Three Balkan Livestock Guardian Dogs," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    6. Pei-Kuan Cong & Wei-Yang Bai & Jin-Chen Li & Meng-Yuan Yang & Saber Khederzadeh & Si-Rui Gai & Nan Li & Yu-Heng Liu & Shi-Hui Yu & Wei-Wei Zhao & Jun-Quan Liu & Yi Sun & Xiao-Wei Zhu & Pian-Pian Zhao , 2022. "Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Rozaimi Mohamad Razali & Juan Rodriguez-Flores & Mohammadmersad Ghorbani & Haroon Naeem & Waleed Aamer & Elbay Aliyev & Ali Jubran & Andrew G. Clark & Khalid A. Fakhro & Younes Mokrab, 2021. "Thousands of Qatari genomes inform human migration history and improve imputation of Arab haplotypes," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    8. David B. Stern & Nathan W. Anderson & Juanita A. Diaz & Carol Eunmi Lee, 2022. "Genome-wide signatures of synergistic epistasis during parallel adaptation in a Baltic Sea copepod," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Alejandro Ochoa & John D Storey, 2021. "Estimating FST and kinship for arbitrary population structures," PLOS Genetics, Public Library of Science, vol. 17(1), pages 1-36, January.
    10. Ali Mahmoudi & Jere Koskela & Jerome Kelleher & Yao-ban Chan & David Balding, 2022. "Bayesian inference of ancestral recombination graphs," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-15, March.
    11. Hobolth, Asger & Siren, Jukka, 2016. "The multivariate Wright–Fisher process with mutation: Moment-based analysis and inference using a hierarchical Beta model," Theoretical Population Biology, Elsevier, vol. 108(C), pages 36-50.
    12. Alice Feurtey & Cécile Lorrain & Megan C. McDonald & Andrew Milgate & Peter S. Solomon & Rachael Warren & Guido Puccetti & Gabriel Scalliet & Stefano F. F. Torriani & Lilian Gout & Thierry C. Marcel &, 2023. "A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Buzbas, Erkan Ozge & Verdu, Paul, 2018. "Inference on admixture fractions in a mechanistic model of recurrent admixture," Theoretical Population Biology, Elsevier, vol. 122(C), pages 149-157.
    14. Youjie Zhao & Chengyong Su & Bo He & Ruie Nie & Yunliang Wang & Junye Ma & Jingyu Song & Qun Yang & Jiasheng Hao, 2023. "Dispersal from the Qinghai-Tibet plateau by a high-altitude butterfly is associated with rapid expansion and reorganization of its genome," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. He Yu & Alexandra Jamieson & Ardern Hulme-Beaman & Chris J. Conroy & Becky Knight & Camilla Speller & Hiba Al-Jarah & Heidi Eager & Alexandra Trinks & Gamini Adikari & Henriette Baron & Beate Böhlendo, 2022. "Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Rachel L. Moran & Emilie J. Richards & Claudia Patricia Ornelas-García & Joshua B. Gross & Alexandra Donny & Jonathan Wiese & Alex C. Keene & Johanna E. Kowalko & Nicolas Rohner & Suzanne E. McGaugh, 2023. "Selection-driven trait loss in independently evolved cavefish populations," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Lejla Kovacevic & Kristiina Tambets & Anne-Mai Ilumäe & Alena Kushniarevich & Bayazit Yunusbayev & Anu Solnik & Tamer Bego & Dragan Primorac & Vedrana Skaro & Andreja Leskovac & Zlatko Jakovski & Katj, 2014. "Standing at the Gateway to Europe - The Genetic Structure of Western Balkan Populations Based on Autosomal and Haploid Markers," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    18. Yvonne Willi & Kay Lucek & Olivier Bachmann & Nora Walden, 2022. "Recent speciation associated with range expansion and a shift to self-fertilization in North American Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Ningbo Chen & Xiaoting Xia & Quratulain Hanif & Fengwei Zhang & Ruihua Dang & Bizhi Huang & Yang Lyu & Xiaoyu Luo & Hucai Zhang & Huixuan Yan & Shikang Wang & Fuwen Wang & Jialei Chen & Xiwen Guan & Y, 2023. "Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Felix Riede & Christian Hoggard & Stephen Shennan, 2019. "Reconciling material cultures in archaeology with genetic data requires robust cultural evolutionary taxonomies," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.