IDEAS home Printed from https://ideas.repec.org/a/caa/jnlcjs/v70y2025i3id186-2024-cjas.html
   My bibliography  Save this article

Whole-genome resequencing data reveal the genetic diversity of local chickens in southern Zhejiang and surrounding areas in China

Author

Listed:
  • Yawen Zhang

    (Institute of Animal Husbandry and Veterinary Medicine, Wenzhou Academy of Agricultural Sciences, Wenzhou, P.R. China)

  • Bo Zhang

    (State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China)

  • Ziwei Li

    (Institute of Animal Husbandry and Veterinary Medicine, Wenzhou Academy of Agricultural Sciences, Wenzhou, P.R. China)

  • Fengxiang Hou

    (Institute of Animal Husbandry and Veterinary Medicine, Wenzhou Academy of Agricultural Sciences, Wenzhou, P.R. China)

  • Yan Zhao

    (Institute of Animal Husbandry and Veterinary Medicine, Wenzhou Academy of Agricultural Sciences, Wenzhou, P.R. China)

  • Junjie Jin

    (Institute of Animal Husbandry and Veterinary Medicine, Wenzhou Academy of Agricultural Sciences, Wenzhou, P.R. China)

  • Bin Song

    (Institute of Animal Husbandry and Veterinary Medicine, Wenzhou Academy of Agricultural Sciences, Wenzhou, P.R. China)

  • Wenjie Gu

    (Institute of Animal Husbandry and Veterinary Medicine, Wenzhou Academy of Agricultural Sciences, Wenzhou, P.R. China)

Abstract

China's local chicken breeds, especially those in the Zhejiang Province, are rich in genetic diversity owing to environmental heterogeneity and complex ecosystems. Distinctive local breeds have emerged through long-term natural selection and domestication. We investigated the genetic diversity and population structure of local chickens in southern Zhejiang and surrounding areas using whole-genome resequencing of 129 chickens from seven populations. A total of 1.8 terabytes of raw data was obtained, and 4 802 728 single nucleotide polymorphisms were detected. The Xianju chicken population exhibited the highest genetic diversity, while Yandang Partridge chickens were genetically distant from other chicken breeds. This study provides valuable information for conserving poultry genetic diversity and informs about breeding programmes of local Chinese chicken breeds.

Suggested Citation

  • Yawen Zhang & Bo Zhang & Ziwei Li & Fengxiang Hou & Yan Zhao & Junjie Jin & Bin Song & Wenjie Gu, 2025. "Whole-genome resequencing data reveal the genetic diversity of local chickens in southern Zhejiang and surrounding areas in China," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 70(3), pages 113-120.
  • Handle: RePEc:caa:jnlcjs:v:70:y:2025:i:3:id:186-2024-cjas
    DOI: 10.17221/186/2024-CJAS
    as

    Download full text from publisher

    File URL: http://cjas.agriculturejournals.cz/doi/10.17221/186/2024-CJAS.html
    Download Restriction: free of charge

    File URL: http://cjas.agriculturejournals.cz/doi/10.17221/186/2024-CJAS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/186/2024-CJAS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Joseph K Pickrell & Jonathan K Pritchard, 2012. "Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data," PLOS Genetics, Public Library of Science, vol. 8(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heng Du & Lei Zhou & Zhen Liu & Yue Zhuo & Meilin Zhang & Qianqian Huang & Shiyu Lu & Kai Xing & Li Jiang & Jian-Feng Liu, 2024. "The 1000 Chinese Indigenous Pig Genomes Project provides insights into the genomic architecture of pigs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Thomas L. Schmidt & Nancy M. Endersby-Harshman & Anthony R. J. Rooyen & Michelle Katusele & Rebecca Vinit & Leanne J. Robinson & Moses Laman & Stephan Karl & Ary A. Hoffmann, 2024. "Global, asynchronous partial sweeps at multiple insecticide resistance genes in Aedes mosquitoes," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Marina Muzzio & Josefina M B Motti & Paula B Paz Sepulveda & Muh-ching Yee & Thomas Cooke & María R Santos & Virginia Ramallo & Emma L Alfaro & Jose E Dipierri & Graciela Bailliet & Claudio M Bravi & , 2018. "Population structure in Argentina," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-13, May.
    4. Baharian, Soheil & Gravel, Simon, 2018. "On the decidability of population size histories from finite allele frequency spectra," Theoretical Population Biology, Elsevier, vol. 120(C), pages 42-51.
    5. Patar Sinaga & Ewelina Klichowska & Arkadiusz Nowak & Marcin Nobis, 2024. "Hybridization and introgression events in cooccurring populations of closely related grasses (Poaceae: Stipa) in high mountain steppes of Central Asia," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-25, February.
    6. Jun Gojobori & Nami Arakawa & Xiayire Xiaokaiti & Yuki Matsumoto & Shuichi Matsumura & Hitomi Hongo & Naotaka Ishiguro & Yohey Terai, 2024. "Japanese wolves are most closely related to dogs and share DNA with East Eurasian dogs," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Yvonne Willi & Kay Lucek & Olivier Bachmann & Nora Walden, 2022. "Recent speciation associated with range expansion and a shift to self-fertilization in North American Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Alexandros G. Sotiropoulos & Epifanía Arango-Isaza & Tomohiro Ban & Chiara Barbieri & Salim Bourras & Christina Cowger & Paweł C. Czembor & Roi Ben-David & Amos Dinoor & Simon R. Ellwood & Johannes Gr, 2022. "Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Mateja Janeš & Minja Zorc & Maja Ferenčaković & Ino Curik & Peter Dovč & Vlatka Cubric-Curik, 2021. "Genomic Characterization of the Three Balkan Livestock Guardian Dogs," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    10. Ningbo Chen & Xiaoting Xia & Quratulain Hanif & Fengwei Zhang & Ruihua Dang & Bizhi Huang & Yang Lyu & Xiaoyu Luo & Hucai Zhang & Huixuan Yan & Shikang Wang & Fuwen Wang & Jialei Chen & Xiwen Guan & Y, 2023. "Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Svend V Nielsen & Andrew H Vaughn & Kalle Leppälä & Michael J Landis & Thomas Mailund & Rasmus Nielsen, 2023. "Bayesian inference of admixture graphs on Native American and Arctic populations," PLOS Genetics, Public Library of Science, vol. 19(2), pages 1-22, February.
    12. Pei-Kuan Cong & Wei-Yang Bai & Jin-Chen Li & Meng-Yuan Yang & Saber Khederzadeh & Si-Rui Gai & Nan Li & Yu-Heng Liu & Shi-Hui Yu & Wei-Wei Zhao & Jun-Quan Liu & Yi Sun & Xiao-Wei Zhu & Pian-Pian Zhao , 2022. "Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Rozaimi Mohamad Razali & Juan Rodriguez-Flores & Mohammadmersad Ghorbani & Haroon Naeem & Waleed Aamer & Elbay Aliyev & Ali Jubran & Andrew G. Clark & Khalid A. Fakhro & Younes Mokrab, 2021. "Thousands of Qatari genomes inform human migration history and improve imputation of Arab haplotypes," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    14. Felix Riede & Christian Hoggard & Stephen Shennan, 2019. "Reconciling material cultures in archaeology with genetic data requires robust cultural evolutionary taxonomies," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 5(1), pages 1-9, December.
    15. David B. Stern & Nathan W. Anderson & Juanita A. Diaz & Carol Eunmi Lee, 2022. "Genome-wide signatures of synergistic epistasis during parallel adaptation in a Baltic Sea copepod," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Soraggi, Samuele & Wiuf, Carsten, 2019. "General theory for stochastic admixture graphs and F-statistics," Theoretical Population Biology, Elsevier, vol. 125(C), pages 56-66.
    17. Crystal M. Tomlin & Sitaram Rajaraman & Jeanne Theresa Sebesta & Anne-Cathrine Scheen & Mika Bendiksby & Yee Wen Low & Jarkko Salojärvi & Todd P. Michael & Victor A. Albert & Charlotte Lindqvist, 2024. "Allopolyploid origin and diversification of the Hawaiian endemic mints," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Alejandro Ochoa & John D Storey, 2021. "Estimating FST and kinship for arbitrary population structures," PLOS Genetics, Public Library of Science, vol. 17(1), pages 1-36, January.
    19. Hobolth, Asger & Siren, Jukka, 2016. "The multivariate Wright–Fisher process with mutation: Moment-based analysis and inference using a hierarchical Beta model," Theoretical Population Biology, Elsevier, vol. 108(C), pages 36-50.
    20. Stephen R. Doyle & Martin Jensen Søe & Peter Nejsum & Martha Betson & Philip J. Cooper & Lifei Peng & Xing-Quan Zhu & Ana Sanchez & Gabriela Matamoros & Gustavo Adolfo Fontecha Sandoval & Cristina Cut, 2022. "Population genomics of ancient and modern Trichuris trichiura," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlcjs:v:70:y:2025:i:3:id:186-2024-cjas. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.