IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005469.html
   My bibliography  Save this article

Transient chromatin properties revealed by polymer models and stochastic simulations constructed from Chromosomal Capture data

Author

Listed:
  • Ofir Shukron
  • David Holcman

Abstract

Chromatin organization can be probed by Chromosomal Capture (5C) data, from which the encounter probability (EP) between genomic sites is presented in a large matrix. This matrix is averaged over a large cell population, revealing diagonal blocks called Topological Associating Domains (TADs) that represent a sub-chromatin organization. To study the relation between chromatin organization and gene regulation, we introduce a computational procedure to construct a bead-spring polymer model based on the EP matrix. The model permits exploring transient properties constrained by the statistics of the 5C data. To construct the polymer model, we proceed in two steps: first, we introduce a minimal number of random connectors inside restricted regions to account for diagonal blocks. Second, we account for long-range frequent specific genomic interactions. Using the constructed polymer, we compute the first encounter time distribution and the conditional probability of three key genomic sites. By simulating single particle trajectories of loci located on the constructed polymers from 5C data, we found a large variability of the anomalous exponent, used to interpret live cell imaging trajectories. The present polymer construction provides a generic tool to study steady-state and transient properties of chromatin constrained by some physical properties embedded in 5C data.Author summary: Chromatin organization remains poorly understood and polymer models are used to reconstruct such organization, to reveal hidden structures and to quantify genomic interactions. We use a generalized Rouse model (a linear chain of beads connected by springs) with additional interacting molecules that allow stable loop formation. The polymer models are constructed using the minimal number of binding molecules, positioned according to the encounter probability matrix obtained from experimental chromosomal capture data. We determine the conditional encounter probability of 3 key loci regulating gene inactivation from our calibrated polymer model. Using polymer simulations, we generate single particle trajectories and explore their transient properties. The present results suggest that the heterogeneity of anomalous exponents measured in live cell imaging is due to the large combinatorics in reconstructing the chromatin organization from Chromosomal Capture data. The present method and algorithms are generic and can be used to reconstruct a polymer model at a given scale from any Chromosomal Capture data.

Suggested Citation

  • Ofir Shukron & David Holcman, 2017. "Transient chromatin properties revealed by polymer models and stochastic simulations constructed from Chromosomal Capture data," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-20, April.
  • Handle: RePEc:plo:pcbi00:1005469
    DOI: 10.1371/journal.pcbi.1005469
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005469
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005469&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fulai Jin & Yan Li & Jesse R. Dixon & Siddarth Selvaraj & Zhen Ye & Ah Young Lee & Chia-An Yen & Anthony D. Schmitt & Celso A. Espinoza & Bing Ren, 2013. "A high-resolution map of the three-dimensional chromatin interactome in human cells," Nature, Nature, vol. 503(7475), pages 290-294, November.
    2. Avelino Javer & Nathan J. Kuwada & Zhicheng Long & Vincenzo G. Benza & Kevin D. Dorfman & Paul A. Wiggins & Pietro Cicuta & Marco Cosentino Lagomarsino, 2014. "Persistent super-diffusive motion of Escherichia coli chromosomal loci," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    3. Manfred Bohn & Dieter W Heermann, 2010. "Diffusion-Driven Looping Provides a Consistent Framework for Chromatin Organization," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-14, August.
    4. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    5. Benjamin D. Pope & Tyrone Ryba & Vishnu Dileep & Feng Yue & Weisheng Wu & Olgert Denas & Daniel L. Vera & Yanli Wang & R. Scott Hansen & Theresa K. Canfield & Robert E. Thurman & Yong Cheng & Günhan G, 2014. "Topologically associating domains are stable units of replication-timing regulation," Nature, Nature, vol. 515(7527), pages 402-405, November.
    6. Assaf Amitai & Mathias Toulouze & Karine Dubrana & David Holcman, 2015. "Analysis of Single Locus Trajectories for Extracting In Vivo Chromatin Tethering Interactions," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-16, August.
    7. Zhijun Duan & Mirela Andronescu & Kevin Schutz & Sean McIlwain & Yoo Jung Kim & Choli Lee & Jay Shendure & Stanley Fields & C. Anthony Blau & William S. Noble, 2010. "A three-dimensional model of the yeast genome," Nature, Nature, vol. 465(7296), pages 363-367, May.
    8. Elphège P. Nora & Bryan R. Lajoie & Edda G. Schulz & Luca Giorgetti & Ikuhiro Okamoto & Nicolas Servant & Tristan Piolot & Nynke L. van Berkum & Johannes Meisig & John Sedat & Joost Gribnau & Emmanuel, 2012. "Spatial partitioning of the regulatory landscape of the X-inactivation centre," Nature, Nature, vol. 485(7398), pages 381-385, May.
    9. Avelino Javer & Zhicheng Long & Eileen Nugent & Marco Grisi & Kamin Siriwatwetchakul & Kevin D. Dorfman & Pietro Cicuta & Marco Cosentino Lagomarsino, 2013. "Short-time movement of E. coli chromosomal loci depends on coordinate and subcellular localization," Nature Communications, Nature, vol. 4(1), pages 1-8, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alon Diament & Tamir Tuller, 2015. "Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-22, May.
    2. Khalid H. Bhat & Saurabh Priyadarshi & Sarah Naiyer & Xinyan Qu & Hammad Farooq & Eden Kleiman & Jeffery Xu & Xue Lei & Jose F. Cantillo & Robert Wuerffel & Nicole Baumgarth & Jie Liang & Ann J. Feene, 2023. "An Igh distal enhancer modulates antigen receptor diversity by determining locus conformation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Zhang Qi & Xu Zheng & Lai Yutong, 2021. "An Empirical Bayes approach for the identification of long-range chromosomal interaction from Hi-C data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 20(1), pages 1-15, February.
    4. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Zhaohui Qin & Ben Li & Karen N. Conneely & Hao Wu & Ming Hu & Deepak Ayyala & Yongseok Park & Victor X. Jin & Fangyuan Zhang & Han Zhang & Li Li & Shili Lin, 2016. "Statistical Challenges in Analyzing Methylation and Long-Range Chromosomal Interaction Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 284-309, October.
    6. Nimrod Rappoport & Elad Chomsky & Takashi Nagano & Charlie Seibert & Yaniv Lubling & Yael Baran & Aviezer Lifshitz & Wing Leung & Zohar Mukamel & Ron Shamir & Peter Fraser & Amos Tanay, 2023. "Single cell Hi-C identifies plastic chromosome conformations underlying the gastrulation enhancer landscape," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Simeon Carstens & Michael Nilges & Michael Habeck, 2016. "Inferential Structure Determination of Chromosomes from Single-Cell Hi-C Data," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-33, December.
    8. Surya K Ghosh & Daniel Jost, 2018. "How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-26, May.
    9. Mattia Conte & Ehsan Irani & Andrea M. Chiariello & Alex Abraham & Simona Bianco & Andrea Esposito & Mario Nicodemi, 2022. "Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. David E. Torres & H. Martin Kramer & Vittorio Tracanna & Gabriel L. Fiorin & David E. Cook & Michael F. Seidl & Bart P. H. J. Thomma, 2024. "Implications of the three-dimensional chromatin organization for genome evolution in a fungal plant pathogen," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Da Lin & Weize Xu & Ping Hong & Chengchao Wu & Zhihui Zhang & Siheng Zhang & Lingyu Xing & Bing Yang & Wei Zhou & Qin Xiao & Jinyue Wang & Cong Wang & Yu He & Xi Chen & Xiaojian Cao & Jiangwei Man & A, 2022. "Decoding the spatial chromatin organization and dynamic epigenetic landscapes of macrophage cells during differentiation and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Koon-Kiu Yan & Shaoke Lou & Mark Gerstein, 2017. "MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-22, July.
    14. Seungsoo Hahn & Dongsup Kim, 2015. "Identifying and Reducing Systematic Errors in Chromosome Conformation Capture Data," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.
    15. Julia Minderjahn & Alexander Fischer & Konstantin Maier & Karina Mendes & Margit Nuetzel & Johanna Raithel & Hanna Stanewsky & Ute Ackermann & Robert Månsson & Claudia Gebhard & Michael Rehli, 2022. "Postmitotic differentiation of human monocytes requires cohesin-structured chromatin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    16. Wu Zuo & Guangming Chen & Zhimei Gao & Shuai Li & Yanyan Chen & Chenhui Huang & Juan Chen & Zhengjun Chen & Ming Lei & Qian Bian, 2021. "Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    17. Jia-Yong Zhong & Longjian Niu & Zhuo-Bin Lin & Xin Bai & Ying Chen & Feng Luo & Chunhui Hou & Chuan-Le Xiao, 2023. "High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Zhen Wah Tan & Enrico Guarnera & Igor N Berezovsky, 2018. "Exploring chromatin hierarchical organization via Markov State Modelling," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-35, December.
    19. Lina Zheng & Wei Wang, 2022. "Regulation associated modules reflect 3D genome modularity associated with chromatin activity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Guang Shi & D. Thirumalai, 2023. "A maximum-entropy model to predict 3D structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.