IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-65130-2.html
   My bibliography  Save this article

HIRA defines early replication initiation zones independently of their genome compartment

Author

Listed:
  • Tina Karagyozova

    (Equipe Labellisée Ligue contre le Cancer
    Roger Land Building)

  • Alberto Gatto

    (Equipe Labellisée Ligue contre le Cancer)

  • Audrey Forest

    (Equipe Labellisée Ligue contre le Cancer)

  • Jean-Pierre Quivy

    (Equipe Labellisée Ligue contre le Cancer)

  • Rocío Nunez-Vazquez

    (Equipe Labellisée Ligue contre le Cancer)

  • Marc A. Martí-Renom

    (Centre Nacional d’Anàlisi Genòmica (CNAG)
    Barcelona Institute of Science and Technology (BIST)
    Pg. Lluís Companys 23)

  • Leonid A. Mirny

    (Massachusetts Institute of Technology)

  • Geneviève Almouzni

    (Equipe Labellisée Ligue contre le Cancer)

Abstract

Chromatin states and 3D architecture have been used as proxy to identify replication initiation zones (IZs) in mammalian cells, yet their functional interconnections remain a puzzle. Here, to dissect these relationships, we focus on the histone H3.3 chaperone HIRA recently implicated in early initiation zone (IZ) definition. We monitor 3D organisation, chromatin accessibility and histone post-translational modifications (PTMs) in wild-type and HIRA knock-out cells in parallel with early replication initiation. In the absence of HIRA, compartment A loses H3.3 enrichment and gains accessibility without changes in associated histone post-translational modifications (PTMs). Furthermore, impaired early firing at HIRA-dependent IZs does not correspond to changes in chromatin accessibility or patterns of histone H3 PTMs. Additionally, a small subset of early IZs initially in compartment A switch to B and lose early initiation in the absence of HIRA. Critically, HIRA complementation restores these early IZ, and H3.3 variant enrichment, without substantial compartment reversal. Thus, while HIRA contributes to compartment A features, its role in regulating early replication initiation can be uncoupled from accessibility, histone marks and compartment organisation.

Suggested Citation

  • Tina Karagyozova & Alberto Gatto & Audrey Forest & Jean-Pierre Quivy & Rocío Nunez-Vazquez & Marc A. Martí-Renom & Leonid A. Mirny & Geneviève Almouzni, 2025. "HIRA defines early replication initiation zones independently of their genome compartment," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65130-2
    DOI: 10.1038/s41467-025-65130-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-65130-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-65130-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haizhen Long & Liwei Zhang & Mengjie Lv & Zengqi Wen & Wenhao Zhang & Xiulan Chen & Peitao Zhang & Tongqing Li & Luyuan Chang & Caiwei Jin & Guozhao Wu & Xi Wang & Fuquan Yang & Jianfeng Pei & Ping Ch, 2020. "H2A.Z facilitates licensing and activation of early replication origins," Nature, Nature, vol. 577(7791), pages 576-581, January.
    2. Zhenhai Du & Hui Zheng & Bo Huang & Rui Ma & Jingyi Wu & Xianglin Zhang & Jing He & Yunlong Xiang & Qiujun Wang & Yuanyuan Li & Jing Ma & Xu Zhang & Ke Zhang & Yang Wang & Michael Q. Zhang & Juntao Ga, 2017. "Allelic reprogramming of 3D chromatin architecture during early mammalian development," Nature, Nature, vol. 547(7662), pages 232-235, July.
    3. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    4. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    5. Benjamin D. Pope & Tyrone Ryba & Vishnu Dileep & Feng Yue & Weisheng Wu & Olgert Denas & Daniel L. Vera & Yanli Wang & R. Scott Hansen & Theresa K. Canfield & Robert E. Thurman & Yong Cheng & Günhan G, 2014. "Topologically associating domains are stable units of replication-timing regulation," Nature, Nature, vol. 515(7527), pages 402-405, November.
    6. Martin Falk & Yana Feodorova & Natalia Naumova & Maxim Imakaev & Bryan R. Lajoie & Heinrich Leonhardt & Boris Joffe & Job Dekker & Geoffrey Fudenberg & Irina Solovei & Leonid A. Mirny, 2019. "Publisher Correction: Heterochromatin drives compartmentalization of inverted and conventional nuclei," Nature, Nature, vol. 572(7771), pages 22-22, August.
    7. Nataliya Petryk & Malik Kahli & Yves d'Aubenton-Carafa & Yan Jaszczyszyn & Yimin Shen & Maud Silvain & Claude Thermes & Chun-Long Chen & Olivier Hyrien, 2016. "Replication landscape of the human genome," Nature Communications, Nature, vol. 7(1), pages 1-13, April.
    8. Déborah Bouvier & Juliette Ferrand & Odile Chevallier & Michelle T. Paulsen & Mats Ljungman & Sophie E. Polo, 2021. "Dissecting regulatory pathways for transcription recovery following DNA damage reveals a non-canonical function of the histone chaperone HIRA," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    9. Daniel Malzl & Mihaela Peycheva & Ali Rahjouei & Stefano Gnan & Kyle N. Klein & Mariia Nazarova & Ursula E. Schoeberl & David M. Gilbert & Sara C. B. Buonomo & Michela Virgilio & Tobias Neumann & Rush, 2023. "RIF1 regulates early replication timing in murine B cells," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Elphège P. Nora & Bryan R. Lajoie & Edda G. Schulz & Luca Giorgetti & Ikuhiro Okamoto & Nicolas Servant & Tristan Piolot & Nynke L. van Berkum & Johannes Meisig & John Sedat & Joost Gribnau & Emmanuel, 2012. "Spatial partitioning of the regulatory landscape of the X-inactivation centre," Nature, Nature, vol. 485(7398), pages 381-385, May.
    11. Dominique Ray-Gallet & M. Daniel Ricketts & Yukari Sato & Kushol Gupta & Ekaterina Boyarchuk & Toshiya Senda & Ronen Marmorstein & Geneviève Almouzni, 2018. "Functional activity of the H3.3 histone chaperone complex HIRA requires trimerization of the HIRA subunit," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    12. Abrar Aljahani & Peng Hua & Magdalena A. Karpinska & Kimberly Quililan & James O. J. Davies & A. Marieke Oudelaar, 2022. "Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Martin Falk & Yana Feodorova & Natalia Naumova & Maxim Imakaev & Bryan R. Lajoie & Heinrich Leonhardt & Boris Joffe & Job Dekker & Geoffrey Fudenberg & Irina Solovei & Leonid A. Mirny, 2019. "Heterochromatin drives compartmentalization of inverted and conventional nuclei," Nature, Nature, vol. 570(7761), pages 395-399, June.
    14. Emily Crane & Qian Bian & Rachel Patton McCord & Bryan R. Lajoie & Bayly S. Wheeler & Edward J. Ralston & Satoru Uzawa & Job Dekker & Barbara J. Meyer, 2015. "Condensin-driven remodelling of X chromosome topology during dosage compensation," Nature, Nature, vol. 523(7559), pages 240-244, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Ziad Ibrahim & Tao Wang & Olivier Destaing & Nicola Salvi & Naghmeh Hoghoughi & Clovis Chabert & Alexandra Rusu & Jinjun Gao & Leonardo Feletto & Nicolas Reynoird & Thomas Schalch & Yingming Zhao & Ma, 2022. "Structural insights into p300 regulation and acetylation-dependent genome organisation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    3. Markus Götz & Olivier Messina & Sergio Espinola & Jean-Bernard Fiche & Marcelo Nollmann, 2022. "Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Dylan Plummer & Xiuyuan Lang & Shanshan Zhang & Yan Li & Jing Li & Fulai Jin, 2025. "A comprehensive benchmark of single-cell Hi-C embedding tools," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    6. Meng Yan & Xiaoyu Merlin Zhang & Zhenhua Yang & Miao Jia & Rongyu Liao & Jinsong Li, 2025. "Visualization of chromosomal reorganization induced by heterologous fusions in the mammalian nucleus," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    7. Sangram Kadam & Kiran Kumari & Vinoth Manivannan & Shuvadip Dutta & Mithun K. Mitra & Ranjith Padinhateeri, 2023. "Predicting scale-dependent chromatin polymer properties from systematic coarse-graining," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Alon Diament & Tamir Tuller, 2015. "Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-22, May.
    9. Wu Zuo & Guangming Chen & Zhimei Gao & Shuai Li & Yanyan Chen & Chenhui Huang & Juan Chen & Zhengjun Chen & Ming Lei & Qian Bian, 2021. "Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    10. Yanlin Zhang & Mathieu Blanchette, 2022. "Reference panel guided topological structure annotation of Hi-C data," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Olivier Messina & Flavien Raynal & Julian Gurgo & Jean-Bernard Fiche & Vera Pancaldi & Marcelo Nollmann, 2023. "3D chromatin interactions involving Drosophila insulators are infrequent but preferential and arise before TADs and transcription," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Mariia Metelova & Maria Louisa Vigh & Nils Krietenstein, 2025. "Deciphering histone mark-specific fine-scale chromatin organization at high resolution with Micro-C-ChIP," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    13. Nimrod Rappoport & Elad Chomsky & Takashi Nagano & Charlie Seibert & Yaniv Lubling & Yael Baran & Aviezer Lifshitz & Wing Leung & Zohar Mukamel & Ron Shamir & Peter Fraser & Amos Tanay, 2023. "Single cell Hi-C identifies plastic chromosome conformations underlying the gastrulation enhancer landscape," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Bobae Yang & Sueun Kim & Woong-Jae Jung & Kyungwoo Kim & Sugyung Kim & Yong-Jin Kim & Tae-Gyun Kim & Eun-Chong Lee & Jung-Sik Joo & Chae Gyu Park & Sumin Oh & Kyung Hyun Yoo & Hyoung-Pyo Kim, 2023. "CTCF controls three-dimensional enhancer network underlying the inflammatory response of bone marrow-derived dendritic cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    15. Ofir Shukron & David Holcman, 2017. "Transient chromatin properties revealed by polymer models and stochastic simulations constructed from Chromosomal Capture data," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-20, April.
    16. Sarah B. Reiff & Andrew J. Schroeder & Koray Kırlı & Andrea Cosolo & Clara Bakker & Luisa Mercado & Soohyun Lee & Alexander D. Veit & Alexander K. Balashov & Carl Vitzthum & William Ronchetti & Kent M, 2022. "The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Khalid H. Bhat & Saurabh Priyadarshi & Sarah Naiyer & Xinyan Qu & Hammad Farooq & Eden Kleiman & Jeffery Xu & Xue Lei & Jose F. Cantillo & Robert Wuerffel & Nicole Baumgarth & Jie Liang & Ann J. Feene, 2023. "An Igh distal enhancer modulates antigen receptor diversity by determining locus conformation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Koon-Kiu Yan & Shaoke Lou & Mark Gerstein, 2017. "MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-22, July.
    19. Hye Ji Cha & Özgün Uyan & Yan Kai & Tianxin Liu & Qian Zhu & Zuzana Tothova & Giovanni A. Botten & Jian Xu & Guo-Cheng Yuan & Job Dekker & Stuart H. Orkin, 2021. "Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    20. Jia-Yong Zhong & Longjian Niu & Zhuo-Bin Lin & Xin Bai & Ying Chen & Feng Luo & Chunhui Hou & Chuan-Le Xiao, 2023. "High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65130-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.