IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004547.html
   My bibliography  Save this article

Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model

Author

Listed:
  • Guido Gigante
  • Gustavo Deco
  • Shimon Marom
  • Paolo Del Giudice

Abstract

Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural) is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed ‘quasi-orbits’, which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network’s firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms.Author Summary: The spontaneous neural activity is the dynamic floor on which the cortex builds its response to incoming stimuli and organizes its information processing, thereby the importance of understanding its dynamical underpinnings. In-vitro preparations, as well as the intact cortex in deep sleep or anesthesia, display a variety of spontaneous collective events, including quasi-synchronous ‘network spikes’ and a complex spectrum of ‘avalanches’, which has been considered suggestive of a ‘typically critical’ state. Light has been shed on selected aspects of such events; still, a unified picture stays elusive, also due to varying statistical definitions of network events. Our work aims to take a step in this direction. We first introduce a probabilistic definition of population events that naturally adapts to different scales of analysis; it reveals, in the activity of cultured networks, as well as in a simple rate model, the co-occurrence of network spikes, ‘quasi-orbits’ and avalanches. Model’s analysis suggests that their emergence is governed by a single parameter measuring the proximity to an oscillatory instability, where the network can amplify fluctuations on a wide range of scales in space and time. We also propose a procedure to infer from neural activity the slow underlying time-scales of the dynamics.

Suggested Citation

  • Guido Gigante & Gustavo Deco & Shimon Marom & Paolo Del Giudice, 2015. "Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-23, November.
  • Handle: RePEc:plo:pcbi00:1004547
    DOI: 10.1371/journal.pcbi.1004547
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004547
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004547&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alberto Mazzoni & Frédéric D Broccard & Elizabeth Garcia-Perez & Paolo Bonifazi & Maria Elisabetta Ruaro & Vincent Torre, 2007. "On the Dynamics of the Spontaneous Activity in Neuronal Networks," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-12, May.
    2. Jorge F Mejias & Hilbert J Kappen & Joaquin J Torres, 2010. "Irregular Dynamics in Up and Down Cortical States," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-13, November.
    3. Marc Benayoun & Jack D Cowan & Wim van Drongelen & Edward Wallace, 2010. "Avalanches in a Stochastic Model of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bershadskii, A. & Ikegaya, Y., 2011. "Chaotic neuron clock," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 342-347.
    2. Mikail Rubinov & Olaf Sporns & Jean-Philippe Thivierge & Michael Breakspear, 2011. "Neurobiologically Realistic Determinants of Self-Organized Criticality in Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-14, June.
    3. di Volo, Matteo & Livi, Roberto, 2013. "The influence of noise on synchronous dynamics in a diluted neural network," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 54-61.
    4. Paraskevov, A.V. & Minkin, A.S., 2022. "Damped oscillations of the probability of random events followed by absolute refractory period: exact analytical results," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    5. Bashkirtseva, Irina A. & Ryashko, Lev B. & Pisarchik, Alexander N., 2020. "Ring of map-based neural oscillators: From order to chaos and back," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    6. Konstantinos Sgantzos & Ian Grigg & Mohamed Al Hemairy, 2022. "Multiple Neighborhood Cellular Automata as a Mechanism for Creating an AGI on a Blockchain," JRFM, MDPI, vol. 15(8), pages 1-24, August.
    7. Minati, Ludovico & Scarpetta, Silvia & Andelic, Mirna & Valdes-Sosa, Pedro A. & Ricci, Leonardo & de Candia, Antonio, 2024. "First- and second-order phase transitions in electronic excitable units and neural dynamics under global inhibitory feedback," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Simone Orcioni & Alessandra Paffi & Francesca Apollonio & Micaela Liberti, 2020. "Revealing Spectrum Features of Stochastic Neuron Spike Trains," Mathematics, MDPI, vol. 8(6), pages 1-13, June.
    9. Safaeesirat, Amin & Moghimi-Araghi, Saman, 2022. "Critical behavior at the onset of synchronization in a neuronal model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    10. Marc Benayoun & Jack D Cowan & Wim van Drongelen & Edward Wallace, 2010. "Avalanches in a Stochastic Model of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-13, July.
    11. Arnaud Delorme & Jason Palmer & Julie Onton & Robert Oostenveld & Scott Makeig, 2012. "Independent EEG Sources Are Dipolar," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-14, February.
    12. Sinisa Pajevic & Dietmar Plenz, 2009. "Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-20, January.
    13. Protachevicz, Paulo R. & Batista, Antonio M. & Caldas, Iberê L. & Baptista, Murilo S., 2024. "Analytical solutions for the short-term plasticity," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    14. Matthias Rybarsch & Stefan Bornholdt, 2014. "Avalanches in Self-Organized Critical Neural Networks: A Minimal Model for the Neural SOC Universality Class," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    15. Gerrit Großmann & Luca Bortolussi & Verena Wolf, 2020. "Efficient simulation of non-Markovian dynamics on complex networks," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    16. Garrett Jenkinson & John Goutsias, 2014. "Intrinsic Noise Induces Critical Behavior in Leaky Markovian Networks Leading to Avalanching," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.