IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002025.html
   My bibliography  Save this article

Cell-Sorting at the A/P Boundary in the Drosophila Wing Primordium: A Computational Model to Consolidate Observed Non-Local Effects of Hh Signaling

Author

Listed:
  • Sabine Schilling
  • Maria Willecke
  • Tinri Aegerter-Wilmsen
  • Olaf A Cirpka
  • Konrad Basler
  • Christian von Mering

Abstract

Non-intermingling, adjacent populations of cells define compartment boundaries; such boundaries are often essential for the positioning and the maintenance of tissue-organizers during growth. In the developing wing primordium of Drosophila melanogaster, signaling by the secreted protein Hedgehog (Hh) is required for compartment boundary maintenance. However, the precise mechanism of Hh input remains poorly understood. Here, we combine experimental observations of perturbed Hh signaling with computer simulations of cellular behavior, and connect physical properties of cells to their Hh signaling status. We find that experimental disruption of Hh signaling has observable effects on cell sorting surprisingly far from the compartment boundary, which is in contrast to a previous model that confines Hh influence to the compartment boundary itself. We have recapitulated our experimental observations by simulations of Hh diffusion and transduction coupled to mechanical tension along cell-to-cell contact surfaces. Intriguingly, the best results were obtained under the assumption that Hh signaling cannot alter the overall tension force of the cell, but will merely re-distribute it locally inside the cell, relative to the signaling status of neighboring cells. Our results suggest a scenario in which homotypic interactions of a putative Hh target molecule at the cell surface are converted into a mechanical force. Such a scenario could explain why the mechanical output of Hh signaling appears to be confined to the compartment boundary, despite the longer range of the Hh molecule itself. Our study is the first to couple a cellular vertex model describing mechanical properties of cells in a growing tissue, to an explicit model of an entire signaling pathway, including a freely diffusible component. We discuss potential applications and challenges of such an approach. Author Summary: In developing animal tissues, cells can often re-arrange locally and mix relatively freely. However, in some stereotypic and crucially important instances during body development, cells will strictly not intermingle, and instead form sharp boundaries along which they will sort out from each other. This mechanism helps organisms to establish signaling centers and to maintain distinct cellular identities. Often, cells at such boundaries will remain in close physical contact and are morphologically alike. Thus, the boundary itself can be difficult to observe unless the expression status of specific marker genes is monitored experimentally. How are these ‘compartment boundaries’ established? Here we devise a computational model that aims to describe one such boundary in a well-studied animal tissue: the developing wing primordium of Drosophila melanogaster. We model the production, diffusion and local sensing of an essential signaling molecule, the Hedgehog protein. We reveal one possible mechanism by which Hedgehog sensing can influence the mechanical properties of cells, and compare the simulated outcome to observations in experimentally perturbed, actual wing discs. Our relatively simple model suffices to establish a straight and stable compartment boundary.

Suggested Citation

  • Sabine Schilling & Maria Willecke & Tinri Aegerter-Wilmsen & Olaf A Cirpka & Konrad Basler & Christian von Mering, 2011. "Cell-Sorting at the A/P Boundary in the Drosophila Wing Primordium: A Computational Model to Consolidate Observed Non-Local Effects of Hh Signaling," PLOS Computational Biology, Public Library of Science, vol. 7(4), pages 1-12, April.
  • Handle: RePEc:plo:pcbi00:1002025
    DOI: 10.1371/journal.pcbi.1002025
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002025
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002025&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George von Dassow & Eli Meir & Edwin M. Munro & Garrett M. Odell, 2000. "The segment polarity network is a robust developmental module," Nature, Nature, vol. 406(6792), pages 188-192, July.
    2. Andreu Casali & Gary Struhl, 2004. "Reading the Hedgehog morphogen gradient by measuring the ratio of bound to unbound Patched protein," Nature, Nature, vol. 431(7004), pages 76-80, September.
    3. Isabel Rodriguez & Konrad Basler, 1997. "Control of compartmental affinity boundaries by Hedgehog," Nature, Nature, vol. 389(6651), pages 614-618, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James M Osborne & Alexander G Fletcher & Joe M Pitt-Francis & Philip K Maini & David J Gavaghan, 2017. "Comparing individual-based approaches to modelling the self-organization of multicellular tissues," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-34, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adel Dayarian & Madalena Chaves & Eduardo D Sontag & Anirvan M Sengupta, 2009. "Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-12, January.
    2. Jasmin Fisher & Nir Piterman & Alex Hajnal & Thomas A Henzinger, 2007. "Predictive Modeling of Signaling Crosstalk during C. elegans Vulval Development," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-12, May.
    3. Daniel Lobo & Michael Levin, 2015. "Inferring Regulatory Networks from Experimental Morphological Phenotypes: A Computational Method Reverse-Engineers Planarian Regeneration," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-28, June.
    4. Cummings, F.W, 2004. "A model of morphogenesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 531-547.
    5. Jordan C Rozum & Réka Albert, 2018. "Identifying (un)controllable dynamical behavior in complex networks," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-17, December.
    6. Ryan N Gutenkunst & Joshua J Waterfall & Fergal P Casey & Kevin S Brown & Christopher R Myers & James P Sethna, 2007. "Universally Sloppy Parameter Sensitivities in Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-8, October.
    7. Zeina Shreif & Vipul Periwal, 2014. "A Network Characteristic That Correlates Environmental and Genetic Robustness," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-23, February.
    8. Andreas Wagner, 2015. "Causal Drift, Robust Signaling, and Complex Disease," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-29, March.
    9. Manuel Cambón & Óscar Sánchez, 2022. "Thermodynamic Modelling of Transcriptional Control: A Sensitivity Analysis," Mathematics, MDPI, vol. 10(13), pages 1-18, June.
    10. Debasish Mondal & Edward Dougherty & Abhishek Mukhopadhyay & Adria Carbo & Guang Yao & Jianhua Xing, 2014. "Systematic Reverse Engineering of Network Topologies: A Case Study of Resettable Bistable Cellular Responses," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-12, August.
    11. Guillermo Rodrigo & Santiago F Elena, 2011. "Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-7, February.
    12. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    13. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    14. Carl Song & Hilary Phenix & Vida Abedi & Matthew Scott & Brian P Ingalls & Mads Kærn & Theodore J Perkins, 2010. "Estimating the Stochastic Bifurcation Structure of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-11, March.
    15. Kazunari Kaizu & Hisao Moriya & Hiroaki Kitano, 2010. "Fragilities Caused by Dosage Imbalance in Regulation of the Budding Yeast Cell Cycle," PLOS Genetics, Public Library of Science, vol. 6(4), pages 1-12, April.
    16. Merav Socolovsky & Michael Murrell & Ying Liu & Ramona Pop & Ermelinda Porpiglia & Andre Levchenko, 2007. "Negative Autoregulation by FAS Mediates Robust Fetal Erythropoiesis," PLOS Biology, Public Library of Science, vol. 5(10), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.