IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v12y2025i1d10.1057_s41599-025-04833-9.html
   My bibliography  Save this article

The allure of microbiome research: promises of holism and the potential for cruel optimism

Author

Listed:
  • Tine Friis

    (University of Copenhagen
    University of Copenhagen)

  • Louise Whiteley

    (University of Copenhagen
    University of Copenhagen
    University of Copenhagen)

  • Adam Bencard

    (University of Copenhagen
    University of Copenhagen)

Abstract

Emerging biomedical fields are frequently communicated in promissory language—expressing hope, and sometimes even hype, about their potential to solve current unsolvable public health challenges and thus contribute to a better future. In this article, we explore the language used to depict gut microbiome research as a promissory field: what does this language “do,” and what might the potential implications be for creating what Lauren Berlant terms cruel optimism? To answer these questions, we conduct a reflexive thematic analysis of promises of holism in academic articles and public science communication books about gut microbiome research. We argue that there is a strong match between current public health challenges and the promises of microbiome research, such that public health contexts may amplify the alluring future that microbiome research is depicted as promising. Furthermore, we argue that this promissory language is formulated in broad terms, making it difficult to pinpoint when a promise has been fulfilled—or when it did not live up to its potentials—thus creating fertile grounds for cruel optimism. The exact forms that this cruel optimism might take is too early to outline. Nonetheless, it is key to understand that the promissory language around microbiome research conveys values about the scope of impact that microbiome research is ascribed to have, with implications for how the body, self and health can be studied in its social, cultural, historical as well as biological mediations. Additionally, we argue that some of the promises of holisms exemplify an illusory holism, reactualizing the divides that the promises otherwise appear to disarm. As such, we situate microbiome research, and the promissory language that invokes holism, as part of an unsettled biomedical history.

Suggested Citation

  • Tine Friis & Louise Whiteley & Adam Bencard, 2025. "The allure of microbiome research: promises of holism and the potential for cruel optimism," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:pal:palcom:v:12:y:2025:i:1:d:10.1057_s41599-025-04833-9
    DOI: 10.1057/s41599-025-04833-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-025-04833-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-025-04833-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. Turnbaugh & Ruth E. Ley & Micah Hamady & Claire M. Fraser-Liggett & Rob Knight & Jeffrey I. Gordon, 2007. "The Human Microbiome Project," Nature, Nature, vol. 449(7164), pages 804-810, October.
    2. Beth Greenhough & Cressida Jervis Read & Jamie Lorimer & Javier Lezaun & Carmen McLeod & Amber Benezra & Sally Bloomfield & Tim Brown & Megan Clinch & Fulvio D’Acquisto & Anna Dumitriu & Joshua Evans , 2020. "Setting the agenda for social science research on the human microbiome," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shilan Li & Jianxin Shi & Paul Albert & Hong-Bin Fang, 2022. "Dependence Structure Analysis and Its Application in Human Microbiome," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    2. Jae-Chang Cho, 2021. "Human microbiome privacy risks associated with summary statistics," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-11, April.
    3. Pirjo Wacklin & Harri Mäkivuokko & Noora Alakulppi & Janne Nikkilä & Heli Tenkanen & Jarkko Räbinä & Jukka Partanen & Kari Aranko & Jaana Mättö, 2011. "Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    4. Disha Tandon & Mohammed Monzoorul Haque & Sharmila S Mande, 2016. "Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-16, April.
    5. Ran Li & Yongming Wang & Han Hu & Yan Tan & Yingfei Ma, 2022. "Metagenomic analysis reveals unexplored diversity of archaeal virome in the human gut," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Margaret Coleman & Christopher Elkins & Bradford Gutting & Emmanuel Mongodin & Gloria Solano‐Aguilar & Isabel Walls, 2018. "Microbiota and Dose Response: Evolving Paradigm of Health Triangle," Risk Analysis, John Wiley & Sons, vol. 38(10), pages 2013-2028, October.
    8. Rafi Grosglik & Dan M. Kotliar, 2024. "Commodifying the microbial self: microbiome-based personalization and the quest for symbiotic singularity," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    9. Liangliang Zhang & Yushu Shi & Robert R. Jenq & Kim‐Anh Do & Christine B. Peterson, 2021. "Bayesian compositional regression with structured priors for microbiome feature selection," Biometrics, The International Biometric Society, vol. 77(3), pages 824-838, September.
    10. Sarah L Hagerty & Kent E Hutchison & Christopher A Lowry & Angela D Bryan, 2020. "An empirically derived method for measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related outcomes among a human clinical sample," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    11. repec:osf:socarx:drcuw_v1 is not listed on IDEAS
    12. Eman M Fouda, 2017. "Airway Microbiota and Allergic Diseases: Clinical Implications," International Journal of Pulmonary & Respiratory Sciences, Juniper Publishers Inc., vol. 1(5), pages 1-5, May.
    13. Kumar P Mainali & Sharon Bewick & Peter Thielen & Thomas Mehoke & Florian P Breitwieser & Shishir Paudel & Arjun Adhikari & Joshua Wolfe & Eric V Slud & David Karig & William F Fagan, 2017. "Statistical analysis of co-occurrence patterns in microbial presence-absence datasets," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-21, November.
    14. Yunjia Lai & Chih-Wei Liu & Yifei Yang & Yun-Chung Hsiao & Hongyu Ru & Kun Lu, 2021. "High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    15. Amirhossein Shamsaddini & Kimia Dadkhah & Patrick M Gillevet, 2020. "BiomMiner: An advanced exploratory microbiome analysis and visualization pipeline," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-13, June.
    16. Ruiz-Moreno, Héctor Alejandro & López-Tamayo, Ana María & Caro-Quintero, Alejandro & Husserl, Johana & González Barrios, Andrés Fernando, 2019. "Metagenome level metabolic network reconstruction analysis reveals the microbiome in the Bogotá River is functionally close to the microbiome in produced water," Ecological Modelling, Elsevier, vol. 399(C), pages 1-12.
    17. Li, Jie & Shen, Xuzhu & Li, YaoTang, 2021. "Modeling the temporal dynamics of gut microbiota from a local community perspective," Ecological Modelling, Elsevier, vol. 460(C).
    18. Gregor Gorkiewicz & Gerhard G Thallinger & Slave Trajanoski & Stefan Lackner & Gernot Stocker & Thomas Hinterleitner & Christian Gülly & Christoph Högenauer, 2013. "Alterations in the Colonic Microbiota in Response to Osmotic Diarrhea," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-17, February.
    19. Lena Takayasu & Wataru Suda & Eiichiro Watanabe & Shinji Fukuda & Kageyasu Takanashi & Hiroshi Ohno & Misako Takayasu & Hideki Takayasu & Masahira Hattori, 2017. "A 3-dimensional mathematical model of microbial proliferation that generates the characteristic cumulative relative abundance distributions in gut microbiomes," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-20, August.
    20. Zachary D Kurtz & Christian L Müller & Emily R Miraldi & Dan R Littman & Martin J Blaser & Richard A Bonneau, 2015. "Sparse and Compositionally Robust Inference of Microbial Ecological Networks," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-25, May.
    21. Patricio S La Rosa & Berkley Shands & Elena Deych & Yanjiao Zhou & Erica Sodergren & George Weinstock & William D Shannon, 2012. "Statistical Object Data Analysis of Taxonomic Trees from Human Microbiome Data," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-12, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:12:y:2025:i:1:d:10.1057_s41599-025-04833-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.