IDEAS home Printed from https://ideas.repec.org/a/pal/marecl/v15y2013i2p172-196.html
   My bibliography  Save this article

Integrated hedging and network planning for container shipping's bunker fuel management

Author

Listed:
  • Xiaoyu Wang

    (Division of Infrastructure Systems and Maritime Studies, School of Civil & Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.)

  • Chee-Chong Teo

    (Division of Infrastructure Systems and Maritime Studies, School of Civil & Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.)

Abstract

Bunker fuel costs could account for 50–60 per cent of a ship's total operating cost in times of high fuel prices. The volatility of the bunker market over recent years has contributed to significant instability of cash flows for shipping lines. In this study, we consider two of the bunker fuel risk management measures employed by container shipping companies to reduce bunker fuel price risk – re-planning of network configuration and financial hedging of bunker fuel prices. The current industry practice is that the network planning and bunker hedging functions are carried out separately and sequentially. Specifically, the liner network is first planned to decide the ports of call, routes, fleet size, vessel types, and subsequently bunker hedging is performed based on the projected bunker fuel consumption and the forecast of bunker fuel price. This article shows the interdependencies between network planning and bunker hedging practices. By a numerical example using decision tree analysis, we illustrate the benefits of using an integrated planning approach that combines network planning and bunker hedging over the widely practiced sequential planning approach. We find that the integrated planning allows shipping lines to identify all available planning options and enables them to make decisions that could better meet the company's managerial priorities in terms of cost, transit time and risk.

Suggested Citation

  • Xiaoyu Wang & Chee-Chong Teo, 2013. "Integrated hedging and network planning for container shipping's bunker fuel management," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 15(2), pages 172-196, June.
  • Handle: RePEc:pal:marecl:v:15:y:2013:i:2:p:172-196
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/mel/journal/v15/n2/pdf/mel20135a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/mel/journal/v15/n2/full/mel20135a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Čech, František & Zítek, Michal, 2022. "Marine fuel hedging under the sulfur cap regulations," Energy Economics, Elsevier, vol. 113(C).
    2. Gu, Yewen & Wallace, Stein W. & Wang, Xin, 2016. "Integrated maritime bunker management with stochastic fuel prices and new emission regulations," Discussion Papers 2016/13, Norwegian School of Economics, Department of Business and Management Science.
    3. Alexandridis, George & Kavussanos, Manolis G. & Kim, Chi Y. & Tsouknidis, Dimitris A. & Visvikis, Ilias D., 2018. "A survey of shipping finance research: Setting the future research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 164-212.
    4. Yewen Gu & Stein W. Wallace & Xin Wang, 2017. "The Impact of Bunker Risk Management on CO2 Emissions in Maritime Transportation Under ECA Regulation," Springer Optimization and Its Applications, in: Didem Cinar & Konstantinos Gakis & Panos M. Pardalos (ed.), Sustainable Logistics and Transportation, pages 199-224, Springer.
    5. Jiawei Ge & Mo Zhu & Mei Sha & Theo Notteboom & Wenming Shi & Xuefeng Wang, 2021. "Towards 25,000 TEU vessels? A comparative economic analysis of ultra-large containership sizes under different market and operational conditions," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(4), pages 587-614, December.
    6. Berit Dangaard Brouer & Christian Vad Karsten & David Pisinger, 2017. "Optimization in liner shipping," 4OR, Springer, vol. 15(1), pages 1-35, March.
    7. Berit Dangaard Brouer & Christian Vad Karsten & David Pisinger, 2018. "Optimization in liner shipping," Annals of Operations Research, Springer, vol. 271(1), pages 205-236, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:marecl:v:15:y:2013:i:2:p:172-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.