IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v68y2017i5d10.1057_s41274-016-0023-4.html
   My bibliography  Save this article

The continuous grey pattern problem

Author

Listed:
  • Zvi Drezner

    (California State University-Fullerton)

  • Pawel Kalczynski

    (California State University-Fullerton)

Abstract

A new location problem is formulated and solved. It is the continuous version of the grey pattern problem which is a special case of the Quadratic Assignment Problem. The problem is a minimization of a convex function subject to non-convex constraints and has infinitely many optimal solutions. We propose several mathematical programming formulations that are suitable for a multi-start heuristic algorithm. In addition to solving these formulations by the Solver in Excel and Mathematica, a special Nelder–Mead algorithm is proposed. This special algorithm provided the best results. One suggested modification may improve the performance of the Nelder–Mead algorithm for other optimization problems as well.

Suggested Citation

  • Zvi Drezner & Pawel Kalczynski, 2017. "The continuous grey pattern problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 469-483, May.
  • Handle: RePEc:pal:jorsoc:v:68:y:2017:i:5:d:10.1057_s41274-016-0023-4
    DOI: 10.1057/s41274-016-0023-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41274-016-0023-4
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41274-016-0023-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jack Elzinga & Donald W. Hearn, 1972. "Geometrical Solutions for Some Minimax Location Problems," Transportation Science, INFORMS, vol. 6(4), pages 379-394, November.
    2. Zvi Drezner, 2015. "The Quadratic Assignment Problem," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 345-363, Springer.
    3. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    4. Zvi Drezner & Atsuo Suzuki, 2004. "The Big Triangle Small Triangle Method for the Solution of Nonconvex Facility Location Problems," Operations Research, INFORMS, vol. 52(1), pages 128-135, February.
    5. James Vijay, 1985. "An Algorithm for the p -Center Problem in the Plane," Transportation Science, INFORMS, vol. 19(3), pages 235-245, August.
    6. William P. Pierskalla, 1968. "Letter to the Editor—The Multidimensional Assignment Problem," Operations Research, INFORMS, vol. 16(2), pages 422-431, April.
    7. Z Drezner & A Suzuki, 2010. "Covering continuous demand in the plane," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 878-881, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pawel Kalczynski & Zvi Goldstein & Zvi Drezner, 2023. "An Efficient Heuristic for the k-Partitioning Problem," SN Operations Research Forum, Springer, vol. 4(4), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    2. Zvi Drezner & Said Salhi, 2017. "Incorporating neighborhood reduction for the solution of the planar p-median problem," Annals of Operations Research, Springer, vol. 258(2), pages 639-654, November.
    3. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2019. "A directional approach to gradual cover," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-93, April.
    4. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.
    5. Liu, Yanchao, 2023. "An elliptical cover problem in drone delivery network design and its solution algorithms," European Journal of Operational Research, Elsevier, vol. 304(3), pages 912-925.
    6. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    7. Kalczynski, Pawel & Drezner, Zvi, 2022. "The Obnoxious Facilities Planar p-Median Problem with Variable Sizes," Omega, Elsevier, vol. 111(C).
    8. Drezner, Zvi & Nickel, Stefan, 2009. "Solving the ordered one-median problem in the plane," European Journal of Operational Research, Elsevier, vol. 195(1), pages 46-61, May.
    9. Pawel Kalczynski & Zvi Drezner, 2021. "The obnoxious facilities planar p-median problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 577-593, June.
    10. Tammy Drezner & Zvi Drezner, 2016. "Sequential location of two facilities: comparing random to optimal location of the first facility," Annals of Operations Research, Springer, vol. 246(1), pages 5-18, November.
    11. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    12. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    13. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
    14. Schnepper, Teresa & Klamroth, Kathrin & Stiglmayr, Michael & Puerto, Justo, 2019. "Exact algorithms for handling outliers in center location problems on networks using k-max functions," European Journal of Operational Research, Elsevier, vol. 273(2), pages 441-451.
    15. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    16. Murray, Alan T., 2021. "Contemporary optimization application through geographic information systems," Omega, Elsevier, vol. 99(C).
    17. N Aras & M Orbay & I K Altinel, 2008. "Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 64-79, January.
    18. Benjamin Lev, 2010. "Book Reviews," Interfaces, INFORMS, vol. 40(6), pages 480-485, December.
    19. Zvi Drezner & Mozart B. C. Menezes, 2016. "The wisdom of voters: evaluating the Weber objective in the plane at the Condorcet solution," Annals of Operations Research, Springer, vol. 246(1), pages 205-226, November.
    20. Duc Manh Nguyen & Hoai An Le Thi & Tao Pham Dinh, 2014. "Solving the Multidimensional Assignment Problem by a Cross-Entropy method," Journal of Combinatorial Optimization, Springer, vol. 27(4), pages 808-823, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:68:y:2017:i:5:d:10.1057_s41274-016-0023-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.