IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v58y2007i9d10.1057_palgrave.jors.2602255.html
   My bibliography  Save this article

The irregular nesting problem: a new approach for nofit polygon calculation

Author

Listed:
  • L Huyao

    (Shanghai Jiaotong University)

  • H Yuanjun

    (Shanghai Jiaotong University)

  • J A Bennell

    (University of Southampton)

Abstract

This paper presents a new approach for generating the nofit polygon (NFP) that is simple, intuitive and computationally efficient. The NFP has in recent years become an important tool for handling the geometric calculations for two-dimensional irregular shape nesting problems. Its value lies in reducing the computational complexity of detecting whether two polygons overlap. The proposed NFP generator is based on the novel concept of trace line segments that are derived from the interaction of the two-component polygons. The complete set of the trace line segments contain all the boundary edges of the NFP and some internal points that need to be discarded. Algorithms for deriving the trace line segments, efficiently determining those segments that form the boundary of the NFP and the identification of holes and degenerate cases are described.

Suggested Citation

  • L Huyao & H Yuanjun & J A Bennell, 2007. "The irregular nesting problem: a new approach for nofit polygon calculation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1235-1245, September.
  • Handle: RePEc:pal:jorsoc:v:58:y:2007:i:9:d:10.1057_palgrave.jors.2602255
    DOI: 10.1057/palgrave.jors.2602255
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602255
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P D Watson & A M Tobias, 1999. "An efficient algorithm for the regular W1 packing of polygons in the infinite plane," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1054-1062, October.
    2. Li, Zhenyu & Milenkovic, Victor, 1995. "Compaction and separation algorithms for non-convex polygons and their applications," European Journal of Operational Research, Elsevier, vol. 84(3), pages 539-561, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Luo & Yunqing Rao, 2022. "Improved Sliding Algorithm for Generating No-Fit Polygon in the 2D Irregular Packing Problem," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    2. E. K. Burke & R. S. R. Hellier & G. Kendall & G. Whitwell, 2010. "Irregular Packing Using the Line and Arc No-Fit Polygon," Operations Research, INFORMS, vol. 58(4-part-1), pages 948-970, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiang Luo & Yunqing Rao, 2022. "Improved Sliding Algorithm for Generating No-Fit Polygon in the 2D Irregular Packing Problem," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    2. Bennell, Julia A. & Oliveira, Jose F., 2008. "The geometry of nesting problems: A tutorial," European Journal of Operational Research, Elsevier, vol. 184(2), pages 397-415, January.
    3. Elkeran, Ahmed, 2013. "A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering," European Journal of Operational Research, Elsevier, vol. 231(3), pages 757-769.
    4. Gahm, Christian & Uzunoglu, Aykut & Wahl, Stefan & Ganschinietz, Chantal & Tuma, Axel, 2022. "Applying machine learning for the anticipation of complex nesting solutions in hierarchical production planning," European Journal of Operational Research, Elsevier, vol. 296(3), pages 819-836.
    5. Masoud Hekmatfar & M. R. M. Aliha & Mir Saman Pishvaee & Tomasz Sadowski, 2023. "A Robust Flexible Optimization Model for 3D-Layout of Interior Equipment in a Multi-Floor Satellite," Mathematics, MDPI, vol. 11(24), pages 1-41, December.
    6. E G Birgin & J M Martínez & W F Mascarenhas & D P Ronconi, 2006. "Method of sentinels for packing items within arbitrary convex regions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 735-746, June.
    7. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    8. Julia A. Bennell & Kathryn A. Dowsland, 2001. "Hybridising Tabu Search with Optimisation Techniques for Irregular Stock Cutting," Management Science, INFORMS, vol. 47(8), pages 1160-1172, August.
    9. Burke, E.K. & Hellier, R.S.R. & Kendall, G. & Whitwell, G., 2007. "Complete and robust no-fit polygon generation for the irregular stock cutting problem," European Journal of Operational Research, Elsevier, vol. 179(1), pages 27-49, May.
    10. Edmund K. Burke & Graham Kendall & Glenn Whitwell, 2009. "A Simulated Annealing Enhancement of the Best-Fit Heuristic for the Orthogonal Stock-Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 505-516, August.
    11. Dickinson, John K. & Knopf, George K., 2000. "A moment based metric for 2-D and 3-D packing," European Journal of Operational Research, Elsevier, vol. 122(1), pages 133-144, April.
    12. Alvarez-Valdes, R. & Martinez, A. & Tamarit, J.M., 2013. "A branch & bound algorithm for cutting and packing irregularly shaped pieces," International Journal of Production Economics, Elsevier, vol. 145(2), pages 463-477.
    13. Donald Jones, 2014. "A fully general, exact algorithm for nesting irregular shapes," Journal of Global Optimization, Springer, vol. 59(2), pages 367-404, July.
    14. Dowsland, Kathryn A. & Vaid, Subodh & Dowsland, William B., 2002. "An algorithm for polygon placement using a bottom-left strategy," European Journal of Operational Research, Elsevier, vol. 141(2), pages 371-381, September.
    15. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    16. Jie Fang & Yunqing Rao & Xusheng Zhao & Bing Du, 2023. "A Hybrid Reinforcement Learning Algorithm for 2D Irregular Packing Problems," Mathematics, MDPI, vol. 11(2), pages 1-17, January.
    17. Sato, André Kubagawa & Martins, Thiago Castro & Gomes, Antonio Miguel & Tsuzuki, Marcos Sales Guerra, 2019. "Raster penetration map applied to the irregular packing problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 657-671.
    18. Stoyan, Yu G. & Patsuk, V. N., 2000. "A method of optimal lattice packing of congruent oriented polygons in the plane," European Journal of Operational Research, Elsevier, vol. 124(1), pages 204-216, July.
    19. Umetani, Shunji & Murakami, Shohei, 2022. "Coordinate descent heuristics for the irregular strip packing problem of rasterized shapes," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1009-1026.
    20. Egeblad, Jens & Nielsen, Benny K. & Odgaard, Allan, 2007. "Fast neighborhood search for two- and three-dimensional nesting problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1249-1266, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:58:y:2007:i:9:d:10.1057_palgrave.jors.2602255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.