IDEAS home Printed from https://ideas.repec.org/a/oup/rfinst/v34y2021i7p3226-3264..html

Selecting Directors Using Machine Learning
[The role of boards of directors in corporate governance: A conceptual framework and survey]

Author

Listed:
  • Isil Erel
  • Léa H Stern
  • Chenhao Tan
  • Michael S Weisbach

Abstract

Can algorithms assist firms in their decisions on nominating corporate directors? Directors predicted by algorithms to perform poorly indeed do perform poorly compared to a realistic pool of candidates in out-of-sample tests. Predictably bad directors are more likely to be male, accumulate more directorships, and have larger networks than the directors the algorithm would recommend in their place. Companies with weaker governance structures are more likely to nominate them. Our results suggest that machine learning holds promise for understanding the process by which governance structures are chosen and has potential to help real-world firms improve their governance.

Suggested Citation

  • Isil Erel & Léa H Stern & Chenhao Tan & Michael S Weisbach, 2021. "Selecting Directors Using Machine Learning [The role of boards of directors in corporate governance: A conceptual framework and survey]," The Review of Financial Studies, Society for Financial Studies, vol. 34(7), pages 3226-3264.
  • Handle: RePEc:oup:rfinst:v:34:y:2021:i:7:p:3226-3264.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/rfs/hhab050
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G30 - Financial Economics - - Corporate Finance and Governance - - - General
    • M12 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Personnel Management; Executives; Executive Compensation
    • M14 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Corporate Culture; Diversity; Social Responsibility
    • M51 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Personnel Economics - - - Firm Employment Decisions; Promotions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:rfinst:v:34:y:2021:i:7:p:3226-3264.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sfsssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.