IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v49y1982i3p473-475..html

Approximate Equilibria with Bounds Independent of Preferences

Author

Listed:
  • Robert M. Anderson
  • M. Ali Khan
  • Salim Rashid

Abstract

We prove the existence of approximate equilibria in exchange economies, giving bounds on the excess demand in terms of the number of traders and norms of the endowments, but independent of the preferences.

Suggested Citation

  • Robert M. Anderson & M. Ali Khan & Salim Rashid, 1982. "Approximate Equilibria with Bounds Independent of Preferences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 49(3), pages 473-475.
  • Handle: RePEc:oup:restud:v:49:y:1982:i:3:p:473-475.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.2307/2297370
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Ali Khan & Metin Uyanik, 2021. "The Yannelis–Prabhakar theorem on upper semi-continuous selections in paracompact spaces: extensions and applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 799-840, April.
    2. Vincenzo Scalzo, 2005. "Approximate social nash equilibria and applications," Quaderni DSEMS 03-2005, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
    3. M. Ali Khan, 2007. "Perfect Competition," PIDE-Working Papers 2007:15, Pakistan Institute of Development Economics.
    4. Anderson, Robert M., 2010. "Core allocations and small income transfers," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 373-381, July.
    5. D'Agata, Antonio, 2012. "Existence of an exact Walrasian equilibrium in nonconvex economies," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-16.
    6. Geng, Runjie & Kubler, Felix, 2023. "Stochastic overlapping generations with non-convex budget sets," Journal of Mathematical Economics, Elsevier, vol. 107(C).
    7. Dietrich, Diemo & Gehrig, Thomas, 2021. "On the instability of private intertemporal liquidity provision," Economics Letters, Elsevier, vol. 209(C).
    8. M. Ali Khan & Kali P. Rath, 2011. "The Shapley-Folkman Theorem and the Range of a Bounded Measure: An Elementary and Unified Treatment," Economics Working Paper Archive 586, The Johns Hopkins University,Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:49:y:1982:i:3:p:473-475.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/restud .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.