IDEAS home Printed from
   My bibliography  Save this article

Spherical regression


  • T. D. Downs


Methods are introduced for regressing points on the surface of one sphere on points on another. Complex variables and stereographic projection are used to deal with theoretical problems of directional statistics much as they have been used historically to deal with problems in non-Euclidean geometry. The complex plane harbours the group of Möbius transformations, and stereographic projection is used as a bridge to map these Möbius transforms to regression link functions on the surface of a unit sphere. A special form for these links is introduced which employs the complex plane and stereographic projection to effect angular scale changes on the sphere. The family of special forms is closed under orthogonal transformations of the dependent variable and Möbius transformations of the independent variable, and incorporates independence and proper and improper rotations as special cases. Parameter estimation and inference are exemplified using the von Mises--Fisher spherical distribution and vectorcardiogram data. All statistical results and calculations have been formulated in the real domain. Copyright Biometrika Trust 2003, Oxford University Press.

Suggested Citation

  • T. D. Downs, 2003. "Spherical regression," Biometrika, Biometrika Trust, vol. 90(3), pages 655-668, September.
  • Handle: RePEc:oup:biomet:v:90:y:2003:i:3:p:655-668

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Davy Paindaveine & Thomas Verdebout, 2017. "Detecting the Direction of a Signal on High-dimensional Spheres: Non-null and Le Cam Optimality Results," Working Papers ECARES ECARES 2017-40, ULB -- Universite Libre de Bruxelles.
    2. Laha, A. K. & Putatunda, Sayan, 2017. "Real Time Location Prediction with Taxi-GPS Data Streams," IIMA Working Papers WP 2017-03-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Davy Paindaveine & Thomas Verdebout, 2019. "Inference for Spherical Location under High Concentration," Working Papers ECARES 2019-02, ULB -- Universite Libre de Bruxelles.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:90:y:2003:i:3:p:655-668. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) The email address of this maintainer does not seem to be valid anymore. Please ask Oxford University Press to update the entry or send us the correct email address or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.