IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v103y2016i3p667-681..html
   My bibliography  Save this article

A Bayesian view of doubly robust causal inference

Author

Listed:
  • O. Saarela
  • L. R. Belzile
  • D. A. Stephens

Abstract

In causal inference the effect of confounding may be controlled using regression adjustment in an outcome model, propensity score adjustment, inverse probability of treatment weighting or a combination of these. Approaches based on modelling the treatment assignment mechanism, along with their doubly robust extensions, have been difficult to motivate using formal likelihood-based or Bayesian arguments, as the treatment assignment model plays no part in inferences concerning the expected outcomes. On the other hand, forcing dependency between the outcome and treatment assignment models by allowing the former to be misspecified results in loss of the balancing property of the propensity scores and the loss of any double robustness. In this paper, we explain in the framework of misspecified models why doubly robust inferences cannot arise from purely likelihood-based arguments. As an alternative to Bayesian propensity score analysis, we propose a Bayesian posterior predictive method for constructing doubly robust estimation procedures by incorporating the inverse treatment assignment probabilities as importance sampling weights in Monte Carlo integration.

Suggested Citation

  • O. Saarela & L. R. Belzile & D. A. Stephens, 2016. "A Bayesian view of doubly robust causal inference," Biometrika, Biometrika Trust, vol. 103(3), pages 667-681.
  • Handle: RePEc:oup:biomet:v:103:y:2016:i:3:p:667-681.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asw025
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rose Sherri & van der Laan Mark J., 2008. "Simple Optimal Weighting of Cases and Controls in Case-Control Studies," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-24, September.
    2. Gustafson Paul, 2012. "Double-Robust Estimators: Slightly More Bayesian than Meets the Eye?," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-15, January.
    3. McCandless Lawrence C & Douglas Ian J. & Evans Stephen J. & Smeeth Liam, 2010. "Cutting Feedback in Bayesian Regression Adjustment for the Propensity Score," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maeregu W. Arisido & Fulvia Mecatti & Paola Rebora, 2022. "Improving the causal treatment effect estimation with propensity scores by the bootstrap," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 455-471, September.
    2. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    3. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    4. Joseph Antonelli & Georgia Papadogeorgou & Francesca Dominici, 2022. "Causal inference in high dimensions: A marriage between Bayesian modeling and good frequentist properties," Biometrics, The International Biometric Society, vol. 78(1), pages 100-114, March.
    5. A. Giffin & B. J. Reich & S. Yang & A. G. Rappold, 2023. "Generalized propensity score approach to causal inference with spatial interference," Biometrics, The International Biometric Society, vol. 79(3), pages 2220-2231, September.
    6. Ray Chambers & Setareh Ranjbar & Nicola Salvati & Barbara Pacini, 2022. "Weighting, informativeness and causal inference, with an application to rainfall enhancement," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1584-1612, October.
    7. Daniel Daly‐Grafstein & Paul Gustafson, 2023. "Combining parametric and nonparametric models to estimate treatment effects in observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 1986-1995, September.
    8. Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2022. "Double Robust Bayesian Inference on Average Treatment Effects," Papers 2211.16298, arXiv.org, revised Feb 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    2. Olli Saarela & David A. Stephens & Erica E. M. Moodie & Marina B. Klein, 2015. "Rejoinder “On Bayesian estimation of marginal structural models”," Biometrics, The International Biometric Society, vol. 71(2), pages 299-301, June.
    3. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    4. A. Giffin & B. J. Reich & S. Yang & A. G. Rappold, 2023. "Generalized propensity score approach to causal inference with spatial interference," Biometrics, The International Biometric Society, vol. 79(3), pages 2220-2231, September.
    5. Rose Sherri & van der Laan Mark J., 2011. "A Targeted Maximum Likelihood Estimator for Two-Stage Designs," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-21, March.
    6. F. Swen Kuh & Grace S. Chiu & Anton H. Westveld, 2019. "Modeling National Latent Socioeconomic Health and Examination of Policy Effects via Causal Inference," Papers 1911.00512, arXiv.org.
    7. van der Laan Mark J. & Petersen Maya & Zheng Wenjing, 2013. "Estimating the Effect of a Community-Based Intervention with Two Communities," Journal of Causal Inference, De Gruyter, vol. 1(1), pages 83-106, June.
    8. James M. Robins & Miguel A. Hernán & Larry Wasserman, 2015. "Discussion of “On Bayesian estimation of marginal structural models”," Biometrics, The International Biometric Society, vol. 71(2), pages 296-299, June.
    9. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
    10. Corwin M. Zigler & Krista Watts & Robert W. Yeh & Yun Wang & Brent A. Coull & Francesca Dominici, 2013. "Model Feedback in Bayesian Propensity Score Estimation," Biometrics, The International Biometric Society, vol. 69(1), pages 263-273, March.
    11. Noah Zaitlen & Sara Lindström & Bogdan Pasaniuc & Marilyn Cornelis & Giulio Genovese & Samuela Pollack & Anne Barton & Heike Bickeböller & Donald W Bowden & Steve Eyre & Barry I Freedman & David J Fri, 2012. "Informed Conditioning on Clinical Covariates Increases Power in Case-Control Association Studies," PLOS Genetics, Public Library of Science, vol. 8(11), pages 1-13, November.
    12. van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
    13. Sherri Rose & Julie Shi & Thomas G. McGuire & Sharon-Lise T. Normand, 2017. "Matching and Imputation Methods for Risk Adjustment in the Health Insurance Marketplaces," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 525-542, December.
    14. Swen Kuh & Grace S. Chiu & Anton H. Westveld, 2020. "Latent Causal Socioeconomic Health Index," Papers 2009.12217, arXiv.org, revised Oct 2023.
    15. Olli Saarela & David A. Stephens & Erica E. M. Moodie & Marina B. Klein, 2015. "On Bayesian estimation of marginal structural models," Biometrics, The International Biometric Society, vol. 71(2), pages 279-288, June.
    16. Etienne Volatier & Francesco Salvo & Antoine Pariente & Émeline Courtois & Sylvie Escolano & Pascale Tubert-Bitter & Ismaïl Ahmed, 2022. "High-Dimensional Propensity Score-Adjusted Case-Crossover for Discovering Adverse Drug Reactions from Computerized Administrative Healthcare Databases," Drug Safety, Springer, vol. 45(3), pages 275-285, March.
    17. Qi Zhou & Catherine McNeal & Laurel A. Copeland & Justin P. Zachariah & Joon Jin Song, 2020. "Bayesian propensity score analysis for clustered observational data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 335-355, June.
    18. Matthew Cefalu & Francesca Dominici & Nils Arvold & Giovanni Parmigiani, 2017. "Model averaged double robust estimation," Biometrics, The International Biometric Society, vol. 73(2), pages 410-421, June.
    19. Alessandra Mattei & Fabrizia Mealli, 2015. "Discussion of “On Bayesian Estimation of Marginal Structural Models”," Biometrics, The International Biometric Society, vol. 71(2), pages 293-296, June.
    20. van der Laan Mark J. & Gruber Susan, 2012. "Targeted Minimum Loss Based Estimation of Causal Effects of Multiple Time Point Interventions," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-41, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:103:y:2016:i:3:p:667-681.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.