IDEAS home Printed from https://ideas.repec.org/a/nea/journl/y2025i66p54-74.html
   My bibliography  Save this article

A comparative analysis of uncertainty conclusions on connections in the stock markets

Author

Listed:
  • Koldanov, P.

    (HSE University, Nizhny Novgorod, Russia)

  • Koldanov, A.

    (HSE University, Nizhny Novgorod, Russia)

  • Semenov, D.

    (HSE University, Nizhny Novgorod, Russia)

Abstract

The problem of connections' analysis between the stock returns is considered. The connections are measured by traditional Pearson correlation as well as rank Kendall correlation. Different measures of uncertainty conclusions on connections in the stock markets based on separation of the conclusions by significant and admissible are proposed. The proposed measures of uncertainty include the ratio of the number of insignificant but valid inferences to the total number of inferences and the ratio of the number of valid inferences to the number of significant inferences. These measures are divided into two types. Measures of the first type are defined as functions of the strength of the connection and provide detailed information on the change in the uncertainty of conclusions about connections in stock markets of a given strength. Measures of the second type or aggregate indicators of the uncertainty of conclusions about connections do not depend on the strength of the connection and characterize the uncertainty of the market as a whole. Comparison of uncertainty conclusions on connection in stock markets of Russia, USA and France is provided. It is shown that these markets differ slightly in the share of uncertain conclusions, regardless of the correlation coefficient used. At the same time, in terms of the number of admissible to the number of significant conclusions on connections, the Russian stock market is much more uncertain.

Suggested Citation

  • Koldanov, P. & Koldanov, A. & Semenov, D., 2025. "A comparative analysis of uncertainty conclusions on connections in the stock markets," Journal of the New Economic Association, New Economic Association, vol. 66(1), pages 54-74.
  • Handle: RePEc:nea:journl:y:2025:i:66:p:54-74
    DOI: 10.31737/22212264_2025_1_54-74
    as

    Download full text from publisher

    File URL: http://www.econorus.org/repec/journl/2025-66-54-74r.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.31737/22212264_2025_1_54-74?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Garas, Antonios & Argyrakis, Panos, 2007. "Correlation study of the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 399-410.
    2. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    3. Oleg Shirokikh & Grigory Pastukhov & Vladimir Boginski & Sergiy Butenko, 2013. "Computational study of the US stock market evolution: a rank correlation-based network model," Computational Management Science, Springer, vol. 10(2), pages 81-103, June.
    4. Koldanov, A. & Koldanov, P. & Semenov, D., 2021. "Confidence set for connected stocks of stock market," Journal of the New Economic Association, New Economic Association, vol. 50(2), pages 12-34.
    5. Kalyagin, V. & Koldanov, A. & Koldanov, P. & Pardalos, P., 2017. "Statistical Procedures for Stock Markets Network Structures Identification," Journal of the New Economic Association, New Economic Association, vol. 35(3), pages 33-52.
    6. Vizgunov, A. & Goldengorin, B. & Zamaraev, V. & Kalyagin, V. & Koldanov, A. & Koldanov, P. & Pardalos, P., 2012. "Applying Market Graphs for Russian Stock Market Analysis," Journal of the New Economic Association, New Economic Association, vol. 15(3), pages 66-81.
    7. Boginski, Vladimir & Butenko, Sergiy & Pardalos, Panos M., 2005. "Statistical analysis of financial networks," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 431-443, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koldanov, A. & Koldanov, P. & Semenov, D., 2021. "Confidence set for connected stocks of stock market," Journal of the New Economic Association, New Economic Association, vol. 50(2), pages 12-34.
    2. V. A. Kalyagin & A. P. Koldanov & P. A. Koldanov & P. M. Pardalos, 2018. "Optimal decision for the market graph identification problem in a sign similarity network," Annals of Operations Research, Springer, vol. 266(1), pages 313-327, July.
    3. V. A. Kalyagin & P. A. Koldanov & P. M. Pardalos, 2015. "Optimal decision for the market graph identification problem in sign similarity network," Papers 1512.06449, arXiv.org.
    4. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    5. Kalyagin, V. & Koldanov, A. & Koldanov, P. & Pardalos, P., 2017. "Statistical Procedures for Stock Markets Network Structures Identification," Journal of the New Economic Association, New Economic Association, vol. 35(3), pages 33-52.
    6. Kartikay Gupta & Niladri Chatterjee, 2020. "Examining Lead-Lag Relationships In-Depth, With Focus On FX Market As Covid-19 Crises Unfolds," Papers 2004.10560, arXiv.org, revised May 2020.
    7. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    8. Neto, José de Paula Neves & Figueiredo, Daniel Ratton, 2023. "Ranking influential and influenced stocks over time using transfer entropy networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    9. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    10. Gustavo Peralta, 2015. "Network-based Measures as Leading Indicators of Market Instability: The case of the Spanish Stock," CNMV Working Papers CNMV Working Papers no 59, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    11. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    12. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    13. Nie, Chun-Xiao, 2017. "Correlation dimension of financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 632-639.
    14. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    15. Seyed Soheil Hosseini & Nick Wormald & Tianhai Tian, 2019. "A Weight-based Information Filtration Algorithm for Stock-Correlation Networks," Papers 1904.06007, arXiv.org.
    16. Bing Li, 2017. "Network Evolution of the Chinese Stock Market: A Study based on the CSI 300 Index," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(3), pages 1-5.
    17. Nie, Chun-Xiao, 2022. "Analysis of critical events in the correlation dynamics of cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    18. Nie, Chun-Xiao, 2023. "Time-varying characteristics of information flow networks in the Chinese market: An analysis based on sector indices," Finance Research Letters, Elsevier, vol. 54(C).
    19. Chun-Xiao Nie & Fu-Tie Song, 2021. "Entropy of Graphs in Financial Markets," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1149-1166, April.
    20. Gerson N. Cardoso & Geraldo E. Silva, 2024. "Electoral influences on the Brazilian B3 data correlation network," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 251-272, January.

    More about this item

    Keywords

    market graph; Pearson correlation; Kendall correlation; statistically significant conclusions; measure of uncertainty;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nea:journl:y:2025:i:66:p:54-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexey Tcharykov (email available below). General contact details of provider: https://edirc.repec.org/data/nearuea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.