IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v599y2021i7883d10.1038_s41586-021-03932-2.html
   My bibliography  Save this article

Carbon implications of marginal oils from market-derived demand shocks

Author

Listed:
  • Mohammad S. Masnadi

    (University of Pittsburgh)

  • Giacomo Benini

    (Stanford University)

  • Hassan M. El-Houjeiri

    (Technology Outlook, Technology Strategy and Planning Department)

  • Alice Milivinti

    (Stanford University)

  • James E. Anderson

    (Ford Motor Company)

  • Timothy J. Wallington

    (Ford Motor Company)

  • Robert Kleine

    (Ford Motor Company)

  • Valerio Dotti

    (Ca’ Foscari University of Venice)

  • Patrick Jochem

    (German Aerospace Center (DLR))

  • Adam R. Brandt

    (Stanford University)

Abstract

Expanded use of novel oil extraction technologies has increased the variability of petroleum resources and diversified the carbon footprint of the global oil supply1. Past life-cycle assessment (LCA) studies overlooked upstream emission heterogeneity by assuming that a decline in oil demand will displace average crude oil2. We explore the life-cycle greenhouse gas emissions impacts of marginal crude sources, identifying the upstream carbon intensity (CI) of the producers most sensitive to an oil demand decline (for example, due to a shift to alternative vehicles). We link econometric models of production profitability of 1,933 oilfields (~90% of the 2015 world supply) with their production CI. Then, we examine their response to a decline in demand under three oil market structures. According to our estimates, small demand shocks have different upstream CI implications than large shocks. Irrespective of the market structure, small shocks (−2.5% demand) displace mostly heavy crudes with ~25–54% higher CI than that of the global average. However, this imbalance diminishes as the shocks become bigger and if producers with market power coordinate their response to a demand decline. The carbon emissions benefits of reduction in oil demand are systematically dependent on the magnitude of demand drop and the global oil market structure.

Suggested Citation

  • Mohammad S. Masnadi & Giacomo Benini & Hassan M. El-Houjeiri & Alice Milivinti & James E. Anderson & Timothy J. Wallington & Robert Kleine & Valerio Dotti & Patrick Jochem & Adam R. Brandt, 2021. "Carbon implications of marginal oils from market-derived demand shocks," Nature, Nature, vol. 599(7883), pages 80-84, November.
  • Handle: RePEc:nat:nature:v:599:y:2021:i:7883:d:10.1038_s41586-021-03932-2
    DOI: 10.1038/s41586-021-03932-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03932-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03932-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giacomo Benini & Adam Brandt & Valerio Dotti & Hassan El-Houjeiri, 2023. "The Economic and Environmental Consequences of the Petroleum Industry Extensive Margin," Working Papers 2023:14, Department of Economics, University of Venice "Ca' Foscari".
    2. Clement Moyo & Izunna Anyikwa & Andrew Phiri, 2023. "The Impact of Covid-19 on Oil Market Returns: Has Market Efficiency Being Violated?," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 118-127, January.
    3. Chai, Maojie & Nourozieh, Hossein & Chen, Zhangxin & Yang, Min, 2022. "A semi-compositional approach to model asphaltene precipitation and deposition in solvent-based bitumen recovery processes," Applied Energy, Elsevier, vol. 328(C).
    4. Liang Jing & Hassan M. El-Houjeiri & Jean-Christophe Monfort & James Littlefield & Amjaad Al-Qahtani & Yash Dixit & Raymond L. Speth & Adam R. Brandt & Mohammad S. Masnadi & Heather L. MacLean & Willi, 2022. "Understanding variability in petroleum jet fuel life cycle greenhouse gas emissions to inform aviation decarbonization," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:599:y:2021:i:7883:d:10.1038_s41586-021-03932-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.