IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v3y2020i9d10.1038_s41893-020-0549-y.html
   My bibliography  Save this article

PEF plastic synthesized from industrial carbon dioxide and biowaste

Author

Listed:
  • L. Jiang

    (Durham University)

  • A. Gonzalez-Diaz

    (Durham University)

  • J. Ling-Chin

    (Durham University)

  • A. Malik

    (Durham University)

  • A. P. Roskilly

    (Durham University)

  • A. J. Smallbone

    (Durham University)

Abstract

Polyethylene furandicarboxylate (PEF) is considered as a renewable-based solution to its fossil-based counterpart polyethylene terephthalate (PET). However, due to its lengthy and energy-intensive production process, PEF has not been established at a commercial scale. Here we present a new study on PEF produced from industrial carbon dioxide (CO2) emissions and non-food-derived biomass to provide an alternative for PET. We assess PEF production from an energy consumption, environmental impacts and production cost point of view at an industrial scale using mass and energy balance, life-cycle assessment and payback period. The results show that emissions and energy consumption can be reduced up to 40.5% compared with PET. Abiotic depletion (fossil) (6.90 × 104 MJ), global-warming potential (3.75 × 103 kg CO2-equivalent) and human toxicity potential (2.18 × 103 kg 1,4-dichlorobenzene equivalent) are the three most substantial impacts in producing one tonne of PEF. By applying optimal design and mature technology, PEF produced from industrial CO2 and biowastes could be a feasible and competitive substitute for PET and other materials.

Suggested Citation

  • L. Jiang & A. Gonzalez-Diaz & J. Ling-Chin & A. Malik & A. P. Roskilly & A. J. Smallbone, 2020. "PEF plastic synthesized from industrial carbon dioxide and biowaste," Nature Sustainability, Nature, vol. 3(9), pages 761-767, September.
  • Handle: RePEc:nat:natsus:v:3:y:2020:i:9:d:10.1038_s41893-020-0549-y
    DOI: 10.1038/s41893-020-0549-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-020-0549-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-020-0549-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Y. & Liu, W. & Yong, J.Y. & Zhang, X.J. & Jiang, L., 2023. "Solar-assisted temperature vacuum swing adsorption for direct air capture: Effect of relative humidity," Applied Energy, Elsevier, vol. 348(C).
    2. Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).
    3. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Zhang, Z.X. & Xu, H.J., 2023. "Thermodynamic modeling on multi-stage vacuum-pressure swing adsorption (VPSA) for direct air carbon capture with extreme dilute carbon dioxide," Energy, Elsevier, vol. 276(C).
    5. Liu, W. & Ji, Y. & Wang, R.Q. & Zhang, X.J. & Jiang, L., 2023. "Analysis on temperature vacuum swing adsorption integrated with heat pump for efficient carbon capture," Applied Energy, Elsevier, vol. 335(C).
    6. Yuantao Peng & Jie Yang & Chenqiang Deng & Jin Deng & Li Shen & Yao Fu, 2023. "Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Liu, W. & Lin, Y.C. & Jiang, L. & Ji, Y. & Yong, J.Y. & Zhang, X.J., 2022. "Thermodynamic exploration of two-stage vacuum-pressure swing adsorption for carbon dioxide capture," Energy, Elsevier, vol. 241(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:3:y:2020:i:9:d:10.1038_s41893-020-0549-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.