IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v1y2016i4d10.1038_nenergy.2016.30.html
   My bibliography  Save this article

High-power all-solid-state batteries using sulfide superionic conductors

Author

Listed:
  • Yuki Kato

    (Higashifuji Technical Center, Toyota Motor Corporation
    Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology
    Battery AT, Advanced Technology 1, Toyota Motor Europe NV/SA)

  • Satoshi Hori

    (Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology)

  • Toshiya Saito

    (Higashifuji Technical Center, Toyota Motor Corporation)

  • Kota Suzuki

    (Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology)

  • Masaaki Hirayama

    (Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology)

  • Akio Mitsui

    (Toyota Motor Corporation)

  • Masao Yonemura

    (Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK))

  • Hideki Iba

    (Higashifuji Technical Center, Toyota Motor Corporation)

  • Ryoji Kanno

    (Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology)

Abstract

Compared with lithium-ion batteries with liquid electrolytes, all-solid-state batteries offer an attractive option owing to their potential in improving the safety and achieving both high power and high energy densities. Despite extensive research efforts, the development of all-solid-state batteries still falls short of expectation largely because of the lack of suitable candidate materials for the electrolyte required for practical applications. Here we report lithium superionic conductors with an exceptionally high conductivity (25 mS cm−1 for Li9.54Si1.74P1.44S11.7Cl0.3), as well as high stability ( ∼0 V versus Li metal for Li9.6P3S12). A fabricated all-solid-state cell based on this lithium conductor is found to have very small internal resistance, especially at 100 ∘C. The cell possesses high specific power that is superior to that of conventional cells with liquid electrolytes. Stable cycling with a high current density of 18 C (charging/discharging in just three minutes; where C is the C-rate) is also demonstrated.

Suggested Citation

  • Yuki Kato & Satoshi Hori & Toshiya Saito & Kota Suzuki & Masaaki Hirayama & Akio Mitsui & Masao Yonemura & Hideki Iba & Ryoji Kanno, 2016. "High-power all-solid-state batteries using sulfide superionic conductors," Nature Energy, Nature, vol. 1(4), pages 1-7, April.
  • Handle: RePEc:nat:natene:v:1:y:2016:i:4:d:10.1038_nenergy.2016.30
    DOI: 10.1038/nenergy.2016.30
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nenergy201630
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nenergy.2016.30?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zhijun & Xie, Zhengkun & Yoshida, Akihiro & Wang, Zhongde & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2019. "Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 367-385.
    2. Oluwasegun M. Ayoola & Alper Buldum & Siamak Farhad & Sammy A. Ojo, 2022. "A Review on the Molecular Modeling of Argyrodite Electrolytes for All-Solid-State Lithium Batteries," Energies, MDPI, vol. 15(19), pages 1-21, October.
    3. Robert Bock & Morten Onsrud & Håvard Karoliussen & Bruno G. Pollet & Frode Seland & Odne S. Burheim, 2020. "Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries," Energies, MDPI, vol. 13(1), pages 1-13, January.
    4. Amiri, Ahmad & Swart, Edward Ned & Polycarpou, Andreas A., 2021. "Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Li, Yong & Yang, Jie & Song, Jian, 2017. "Efficient storage mechanisms and heterogeneous structures for building better next-generation lithium rechargeable batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1503-1512.
    6. Singh, Rahul & Polu, Anji Reddy & Bhattacharya, B. & Rhee, Hee-Woo & Varlikli, Canan & Singh, Pramod K., 2016. "Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1098-1117.
    7. Henrik Zsiborács & Nóra Hegedűsné Baranyai & András Vincze & István Háber & Gábor Pintér, 2018. "Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe," Energies, MDPI, vol. 11(6), pages 1-17, June.
    8. Julian Hoelzen & Yaolong Liu & Boris Bensmann & Christopher Winnefeld & Ali Elham & Jens Friedrichs & Richard Hanke-Rauschenbach, 2018. "Conceptual Design of Operation Strategies for Hybrid Electric Aircraft," Energies, MDPI, vol. 11(1), pages 1-26, January.
    9. Yoon, Da Hye & Park, Yong Joon, 2022. "Effects of lithium bis(oxalato)borate-derived surface coating layers on the performances of high-Ni cathodes for all-solid-state batteries," Applied Energy, Elsevier, vol. 326(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:1:y:2016:i:4:d:10.1038_nenergy.2016.30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.