IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13706.html
   My bibliography  Save this article

Efficiency limits for photoelectrochemical water-splitting

Author

Listed:
  • Katherine T. Fountaine

    (NG Next, 1 Space Park Drive
    Deparment of Chemistry and Chemical Engineering, California Institute of Technology
    California Institute of Technology
    Joint Center for Artificial Photosynthesis, California Institute of Technology)

  • Hans Joachim Lewerenz

    (California Institute of Technology
    Joint Center for Artificial Photosynthesis, California Institute of Technology)

  • Harry A. Atwater

    (California Institute of Technology
    Joint Center for Artificial Photosynthesis, California Institute of Technology)

Abstract

Theoretical limiting efficiencies have a critical role in determining technological viability and expectations for device prototypes, as evidenced by the photovoltaics community’s focus on detailed balance. However, due to their multicomponent nature, photoelectrochemical devices do not have an equivalent analogue to detailed balance, and reported theoretical efficiency limits vary depending on the assumptions made. Here we introduce a unified framework for photoelectrochemical device performance through which all previous limiting efficiencies can be understood and contextualized. Ideal and experimentally realistic limiting efficiencies are presented, and then generalized using five representative parameters—semiconductor absorption fraction, external radiative efficiency, series resistance, shunt resistance and catalytic exchange current density—to account for imperfect light absorption, charge transport and catalysis. Finally, we discuss the origin of deviations between the limits discussed herein and reported water-splitting efficiencies. This analysis provides insight into the primary factors that determine device performance and a powerful handle to improve device efficiency.

Suggested Citation

  • Katherine T. Fountaine & Hans Joachim Lewerenz & Harry A. Atwater, 2016. "Efficiency limits for photoelectrochemical water-splitting," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13706
    DOI: 10.1038/ncomms13706
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13706
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tayebi, Meysam & Lee, Byeong-Kyu, 2019. "Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 332-343.
    2. Saraswat, Sushil Kumar & Rodene, Dylan D. & Gupta, Ram B., 2018. "Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 228-248.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.