IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64649-8.html
   My bibliography  Save this article

Bipolar ethylene electrosynthesis from CO2 and biowaste acid with total faradaic efficiency over 118%

Author

Listed:
  • Wenjie Xue

    (Yangtze University
    Huazhong University of Science and Technology
    Yangtze University)

  • Hui Jiang

    (Huazhong University of Science and Technology)

  • Jinlong Liu

    (Central South University)

  • Xinqing Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Conghui Tang

    (Huazhong University of Science and Technology)

  • Bao Yu Xia

    (Huazhong University of Science and Technology
    Sungkyunkwan University (SKKU))

  • Bo You

    (Huazhong University of Science and Technology)

Abstract

Ethylene (C2H4), a cornerstone of the chemical industry, is produced predominantly via fossil-intensive high-temperature processes that contribute significantly to global energy consumption and CO2 emissions. Here, we report an ambient bipolar C2H4 electrosynthesis system that concurrently decarboxylates propanoic acid, a prevalent biorefinery waste, at nanoporous Pt microparticles-coated anode and reduces CO2 at W-doped CuOx-loaded cathode. Physicochemical and operando spectroscopy characterizations, along with theoretical modeling reveal that the polarized Pt-PtO2 interface formed in situ downshifts the d-band relative to Fermi level which favors the desorption of *CH2CH2 intermediate to promote selective propanoic acid decarboxylation toward C2H4. Remarkably, the resulting electrocatalyst couple delivers an unprecedented C2H4 faradaic efficiency (FEC2H4) of 118.7% and a large current density of 1000 mA cm−2, and sustains a FEC2H4 exceeding 103.4% for over 265 h at an industrial current density of 400 mA cm−2, offering a promising pathway to carbon-neutral C2H4 production from waste feedstocks.

Suggested Citation

  • Wenjie Xue & Hui Jiang & Jinlong Liu & Xinqing Chen & Conghui Tang & Bao Yu Xia & Bo You, 2025. "Bipolar ethylene electrosynthesis from CO2 and biowaste acid with total faradaic efficiency over 118%," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64649-8
    DOI: 10.1038/s41467-025-64649-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64649-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64649-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wensheng Fang & Wei Guo & Ruihu Lu & Ya Yan & Xiaokang Liu & Dan Wu & Fu Min Li & Yansong Zhou & Chaohui He & Chenfeng Xia & Huiting Niu & Sicong Wang & Youwen Liu & Yu Mao & Chengyi Zhang & Bo You & , 2024. "Publisher Correction: Durable CO2 conversion in the proton-exchange membrane system," Nature, Nature, vol. 627(8005), pages 13-13, March.
    2. Miao Zhong & Kevin Tran & Yimeng Min & Chuanhao Wang & Ziyun Wang & Cao-Thang Dinh & Phil De Luna & Zongqian Yu & Armin Sedighian Rasouli & Peter Brodersen & Song Sun & Oleksandr Voznyy & Chih-Shan Ta, 2020. "Accelerated discovery of CO2 electrocatalysts using active machine learning," Nature, Nature, vol. 581(7807), pages 178-183, May.
    3. Yi-Fan Huang & Patricia J. Kooyman & Marc T. M. Koper, 2016. "Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    4. Nannan Meng & Jiang Shao & Hongjiao Li & Yuting Wang & Xiaoli Fu & Cuibo Liu & Yifu Yu & Bin Zhang, 2022. "Electrosynthesis of formamide from methanol and ammonia under ambient conditions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Ruijie Gao & Jian Wang & Zhen-Feng Huang & Rongrong Zhang & Wei Wang & Lun Pan & Junfeng Zhang & Weikang Zhu & Xiangwen Zhang & Chengxiang Shi & Jongwoo Lim & Ji-Jun Zou, 2021. "Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading," Nature Energy, Nature, vol. 6(6), pages 614-623, June.
    6. Wensheng Fang & Wei Guo & Ruihu Lu & Ya Yan & Xiaokang Liu & Dan Wu & Fu Min Li & Yansong Zhou & Chaohui He & Chenfeng Xia & Huiting Niu & Sicong Wang & Youwen Liu & Yu Mao & Chengyi Zhang & Bo You & , 2024. "Durable CO2 conversion in the proton-exchange membrane system," Nature, Nature, vol. 626(7997), pages 86-91, February.
    7. Sumit Verma & Shawn Lu & Paul J. A. Kenis, 2019. "Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption," Nature Energy, Nature, vol. 4(6), pages 466-474, June.
    8. Fengwang Li & Arnaud Thevenon & Alonso Rosas-Hernández & Ziyun Wang & Yilin Li & Christine M. Gabardo & Adnan Ozden & Cao Thang Dinh & Jun Li & Yuhang Wang & Jonathan P. Edwards & Yi Xu & Christopher , 2020. "Molecular tuning of CO2-to-ethylene conversion," Nature, Nature, vol. 577(7791), pages 509-513, January.
    9. Hua Zhou & Yue Ren & Zhenhua Li & Ming Xu & Ye Wang & Ruixiang Ge & Xianggui Kong & Lirong Zheng & Haohong Duan, 2021. "Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Xiaojie She & Lingling Zhai & Yifei Wang & Pei Xiong & Molly Meng-Jung Li & Tai-Sing Wu & Man Chung Wong & Xuyun Guo & Zhihang Xu & Huaming Li & Hui Xu & Ye Zhu & Shik Chi Edman Tsang & Shu Ping Lau, 2024. "Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 A," Nature Energy, Nature, vol. 9(1), pages 81-91, January.
    11. Huali Wu & Lingqi Huang & Janis Timoshenko & Kun Qi & Wensen Wang & Jiefeng Liu & Yang Zhang & Shaokang Yang & Eddy Petit & Valérie Flaud & Ji Li & Chrystelle Salameh & Philippe Miele & Luc Lajaunie &, 2024. "Selective and energy-efficient electrosynthesis of ethylene from CO2 by tuning the valence of Cu catalysts through aryl diazonium functionalization," Nature Energy, Nature, vol. 9(4), pages 422-433, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangbo Ma & Liang Guo & Liang Chang & Weihua Guo & Tao Zhou & Fengkun Hao & Wenda Su & Jingwen Zhou & Guozhi Wang & Mingzheng Shao & Jihan Yu & Jinwen Yin & Yunhao Wang & Fu Liu & An Zhang & Kun Qian , 2025. "Unconventional phase metal heteronanostructures with tunable exposed interface for efficient tandem nitrate electroreduction to ammonia," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Bo Peng & Hao She & Zihao Wei & Zhiyi Sun & Ziwei Deng & Zhongti Sun & Wenxing Chen, 2025. "Sulfur-doping tunes p-d orbital coupling over asymmetric Zn-Sn dual-atom for boosting CO2 electroreduction to formate," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Xiaotong Li & Kainan Gao & Mingliang Qu & Nanhui Li & Xiangzhou Lv & Xiuju Wu & Qingyang Lin & Hao Bin Wu, 2025. "Membrane-free CO2 electrolyzer design for economically efficient formic acid electro-synthesis," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Jian Cheng & Ling Chen & Yanzhi Zhang & Min Wang & Zhangyi Zheng & Lin Jiang & Zhao Deng & Zhihe Wei & Mutian Ma & Likun Xiong & Wei Hua & Daqi Song & Wenxuan Huo & Yuebin Lian & Wenjun Yang & Fenglei, 2025. "Metal-organic double layer to stabilize selective multi-carbon electrosynthesis," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    5. Xinzhong Wang & Yiwen Su & Jiashu Chen & Edward Hengzhou Yan & Qing Xia & Jie Wu & Shanhe Gong & Mingcong Tang & Wai Sze Yip & Yongbiao Mu & Yuyang Yi & Jinjin Wu & Fujing Xu & Xianzhong Yang & Xiao Z, 2025. "Revisiting Pt foil catalysts for formamide electrosynthesis achieved at industrial-level current densities," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    6. Kaihang Yue & Yanyang Qin & Honghao Huang & Zhuoran Lv & Mingzhi Cai & Yaqiong Su & Fuqiang Huang & Ya Yan, 2024. "Stabilized Cu0 -Cu1+ dual sites in a cyanamide framework for selective CO2 electroreduction to ethylene," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Luming Zhang & Huan Ma & Yongfang Sun & Yilin Zhao & Huiying Deng & Yuhang Wang & Fei Wang & Xiao-Dong Wen & Mingchuan Luo, 2025. "Spontaneous water dissociation on intermetallic electride LaCu0.67Si1.33 enhances electrochemical methanization of CO2," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Hao Dong & Ran Luo & Gong Zhang & Lulu Li & Chaoxi Wang & Guodong Sun & Hongyi Wang & Jiachang Liu & Tuo Wang & Zhi-Jian Zhao & Peng Zhang & Jinlong Gong, 2025. "Electrochemical epoxidation enhanced by C2H4 activation and hydroxyl generation at the Ag/SnO2 interface," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    9. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Jieyang Li & Huanlei Zhang & Changhao Luo & Dongbo Cheng & Wanping Xu & Meng Lin, 2025. "Non-isothermal CO2 electrolysis enables simultaneous enhanced electrochemical and anti-precipitation performance," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    11. Qiyou Wang & Tao Luo & Xueying Cao & Yujie Gong & Yuxiang Liu & Yusen Xiao & Hongmei Li & Franz Gröbmeyer & Ying-Rui Lu & Ting-Shan Chan & Chao Ma & Kang Liu & Junwei Fu & Shiguo Zhang & Changxu Liu &, 2025. "Lanthanide single-atom catalysts for efficient CO2-to-CO electroreduction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Linbo Li & Xin Lei & Zhilong Zheng & Yingjun Dong & Haohui Chen & Jun Chen & Yi Zhong & Yongping Zheng & Yongbing Tang & Xiaolong Zhang & Hui-Ming Cheng, 2025. "Tuning binding strength between single metal atoms and supports enhances electrochemical CO2 methanation," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    14. Jialei Chen & Tiantian Lu & Xuelong Liao & Shan Chen & Youzeng Li & Yue Wang & Runyu Lv & Wenyue Cui & Wenlong Lan & Wei Wang & Lixin Cao & Zhuo Chen & Zhuang Zhao & Jinhan Li & Wei Shi & Sheng Zhang , 2025. "Nutrient diffusion-inspired catalysts with self-reinforced concentration gradient for sustainable electroreduction of dilute CO2," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    15. Huiying Deng & Tingting Liu & Wenshan Zhao & Jundong Wang & Yuesheng Zhang & Shuzhen Zhang & Yu Yang & Chao Yang & Wenzhi Teng & Zhuo Chen & Gengfeng Zheng & Fengwang Li & Yaqiong Su & Jingshu Hui & Y, 2024. "Substituent tuning of Cu coordination polymers enables carbon-efficient CO2 electroreduction to multi-carbon products," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Yufei Cao & Zhu Chen & Peihao Li & Adnan Ozden & Pengfei Ou & Weiyan Ni & Jehad Abed & Erfan Shirzadi & Jinqiang Zhang & David Sinton & Jun Ge & Edward H. Sargent, 2023. "Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Ji Kai Liu & Mengde Kang & Kai Huang & Hao Guan Xu & Yi Xiao Wu & Xin Yu Zhang & Yan Zhu & Hao Fan & Song Ru Fang & Yi Zhou & Cheng Lian & Peng Fei Liu & Hua Gui Yang, 2025. "Stable Ni(II) sites in Prussian blue analogue for selective, ampere-level ethylene glycol electrooxidation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    18. Zhongjie Cai & Hongwei Liu & Jiajun Dai & Bao Li & Liming Yang & Jingyu Wang & Huaiyong Zhu, 2025. "Sunlight-driven simultaneous CO2 reduction and water oxidation using indium-organic framework heterostructures," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    19. Wang, Yang & Gong, Li & Yue, Pengtao & Ma, Long & Li, Jun & Zhang, Liang & Zhu, Xun & Fu, Qian & Liao, Qiang, 2025. "CO2 capture and electrochemical upgrade of MEA-based solution: Life cycle assessment and techno-economic analysis," Applied Energy, Elsevier, vol. 384(C).
    20. Zewei Wu & Yi Liu & Sai Chen & Jiamin Zheng & Weixing Zhang & Zhi-Jian Zhao & Xiao Liu & Jinlong Gong, 2025. "Ethane dehydrogenation over CaCO3-mediated tandem catalysts," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64649-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.